Rochester Water Reclamation Plant 2019 Facilities Plan

Technical Memorandum 2: Wastewater Characterization and BioWin Calibration

TM 2 of 13 | J4325

LOWER ENERGY // CLEAN DESIGN DECREASED MAINTENANCE // INNOVATIVE PROCESSES

Technical Memorandum

30 7th Street East, Suite 2500 Saint Paul, MN 55101

Phone: 651-298-0710

- Prepared for: City of Rochester
- Project Title: Water Reclamation Plant Facilities Plan
- Project No.: 150811

City No.: J4325

Technical Memorandum No. 2

Subject: Wastewater Characterization and BioWin Calibration

Date: September 8, 2018

To: Matt Baker, P.E. Project Manager

From: Harold Voth, P.E. Project Manager

Prepared by:

Donavan Esping, P.E

Michael Stenstrom, Ph.D. P.E.*

Reviewed by:

Jose Jimenez, Ph.D. P.E.*

I hereby certify that this plan, specification, or report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Minnesota.

Signature:

Name: Donavan Esping

Date: September 8, 2018 License No. 22972

*Professional Engineer Registered in Specific States

Limitations:

This document was prepared solely for the City of Rochester in accordance with professional standards at the time the services were performed and in accordance with the contract between City of Rochester and Brown and Caldwell dated May 15, 2017. This document is governed by the specific scope of work authorized by the city of Rochester; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by the City of Rochester and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

List o	of Figure	9S	iii
List o	of Table	5	v
Exec	utive Su	mmary	
Sect	ion 1: 0	biective	4
Sect	ion 2: B	ackground	5
2.1	BioWin	Calibration Configuration	
Soct	ion 3. In	fluent Wastewater Characterization	10
3 1	Wastev	vater Characteristics - August 2017	10
3.2	Waster	vater Characteristics – April 2018	
Sect	ion 4: Bi	oWin Calibration Influent Itinerary	
Sect	ion 5: Bi	oWin Calibration	
5.1	Step 1	- Steady State Calibration	
5.2	Step 2	- Dvnamic Calibration	
	5.2.1	Primary Influent	
	5.2.2	Primary Clarifier 1/2	
	5.2.3	Primary Clarifier 3	
	5.2.4	ABC Aeration Basins	
	5.2.5	ABC Secondary Clarifier 5	
	5.2.6	1 st Stage HPOAS	
	5.2.7	2nd Stage HPOAS	
	5.2.8	Plant Effluent	
	5.2.9	Waste Activated Sludge (WAS) Gravity Belt Thickeners	
	5.2.10	Digester Feed	
	5.2.11	Digesters	
	5.2.12	Digested Sludge Holding	
	5.2.13	Digested Sludge (DS) GBTs	
Sect	ion 6: R	eferences	A-1
Attac	hment .	A: Wastewater Characterization Sampling Plan	A-1
Attac	hment	B: Wastewater Characterization Data	B-1
Attac	hment	C: April 2018 Wastewater Characterization Data	C-1
Attac	hment	D: HPOAS Off Gas Testing Data	D-1
Attac	hment	E: Nitrification Rate Testing	E-1

List of Figures

Figure 2-1. Rochester WRP Flow Schematic	6
Figure 2-2. Rochester WRP Plant Layout	7
Figure 2-3. Rochester WRP BioWin Calibration Flow Schematic	8
Figure 3-1. Graphical Representation of BioWin™ Influent COD, TKN and TP fractions	
Figure 3-2. Rochester WRP Influent Nitrate+Nitrite Concentrations.	13
Figure 4-1. BioWin Calibration Plant Influent Flow and Temperature Itinerary	14
Figure 4-2. BioWin Calibration Plant Influent COD and cBOD5 Itinerary	14
Figure 4-3. BioWin Calibration Plant Influent TSS and VSS Itinerary.	15
Figure 4-4. BioWin Calibration Plant Influent TKN and Ammonia Itinerary.	15
Figure 4-5. BioWin Calibration Plant Influent TP and Phosphate Itinerary	15
Figure 5-1. BioWin Calibration Primary Influent Flows	19
Figure 5-2. BioWin Calibration Primary Influent COD and cBOD5	
Figure 5-3. BioWin Calibration Primary Influent TSS and VSS	19
Figure 5-4. BioWin Calibration Primary Influent TKN and Ammonia	20
Figure 5-5. BioWin Calibration Primary Influent TP and Phosphate	20
Figure 5-6. BioWin Calibration Primary Clarifier 1/2 Effluent COD and cBOD5	21
Figure 5-7. BioWin Calibration Primary Clarifier 1/2 Effluent Filtered (Soluble) COD	21
Figure 5-8. BioWin Calibration Influent and Primary Effluent Volatile Fatty Acids	21
Figure 5-9. BioWin Calibration Primary Clarifier 1/2 Effluent TSS and VSS	22
Figure 5-10. BioWin Calibration Primary Clarifier 1/2 Effluent TKN and Ammonia	22
Figure 5-11. BioWin Calibration Primary Clarifier 1/2 Effluent TP and Phosphate	22
Figure 5-12. BioWin Calibration Primary Clarifier $1/2$ Sludge Flows and Concentrations	22
Figure 5-13. BioWin Calibration Primary Clarifier 3 Effluent COD and cBOD5	23
Figure 5-14. BioWin Calibration Primary Clarifier 3 Effluent TSS and VSS	23
Figure 5-15. BioWin Calibration Primary Clarifier 3 Effluent TKN and Ammonia	23
Figure 5-16. BioWin Calibration Primary Clarifier 3 Effluent TP and Phosphate	24
Figure 5-17. BioWin Calibration Primary Clarifier 3 Sludge Flows and Concentrations	24
Figure 5-18. BioWin Calibration ABC MLSS and MLVSS:MLSS	25
Figure 5-19. BioWin Calibration ABC Total Airflow.	25
Figure 5-20. BioWin Calibration ABC Phosphate Profile.	25
Figure 5-21. BioWin Calibration ABC Ammonia Profile	
Figure 5-22. BioWin Calibration ABC Nitrate+Nitrite Profile	
Figure 5-23. BioWin Calibration Secondary Clarifier 5 Effluent TSS.	27

Figure	5-24.	BioWin	Calibration	Secondary Clarifier 5 Effluent cBOD5	.27
Figure	5-25.	BioWin	Calibration	Secondary Clarifier 5 Ammonia	.27
Figure	5-26.	BioWin	Calibration	Secondary Clarifier 5 Nitrate + Nitrite.	.27
Figure	5-27.	BioWin	Calibration	Secondary Clarifier 5 TKN.	28
Figure	5-28.	BioWin	Calibration	Secondary Clarifier 5 Phosphorus	28
Figure	5-29.	BioWin	Calibration	Secondary Clarifier 5 Return Sludge Flow and TSS	.28
Figure	5-30.	BioWin	Calibration	1 st Stage HPOAS MLSS and MLVSS	.29
Figure	5-31.	BioWin	Calibration	1 st Stage HPOAS Effluent TSS.	.29
Figure	5-32.	BioWin	Calibration	1 st Stage HPOAS Effluent cBOD5	.30
Figure	5-33.	BioWin	Calibration	1 st Stage HPOAS Effluent COD.	.30
Figure	5-34.	BioWin	Calibration	1st Stage HPOAS Effluent Nitrogen.	.30
Figure	5-35.	BioWin	Calibration	1 st Stage HPOAS Effluent Phosphorus	.30
Figure	5-36.	BioWin	Calibration	$1^{\mbox{\scriptsize st}}$ Stage HPOAS Clarifier Return Sludge Flow and TSS	.31
Figure	5-37.	BioWin	Calibration	2nd Stage HPOAS MLSS and MLVSS	.34
Figure	5-38.	BioWin	Calibration	Secondary Clarifier 1-4 Effluent TSS	.34
Figure	5-39	BioWin	Calibration	Secondary Clarifier 1-4 Effluent Ammonia	.35
Figure	5-40	BioWin	Calibration	Secondary Clarifier 1-4 Effluent Nitrate+Nitrite (NOx)	.35
Figure	5-41.	BioWin	Calibration	Secondary Clarifier 1-4 Effluent Phosphorus.	.35
Figure	5-42.	BioWin	Calibration	2nd Stage HPOAS Clarifier Return Sludge Flow and TSS.	.36
Figure	5-43.	BioWin	Calibration	WAS Gravity Belt Thickener Feed Flow.	.36
Figure	5-44.	BioWin	Calibration	WAS Gravity Belt Thickener Feed TSS.	.37
Figure	5-45.	BioWin	Calibration	WAS Gravity Belt Thickener Thickened Sludge Flow and TSS	37
Figure	5-46.	BioWin	Calibration	WAS Gravity Belt Thickener Filtrate Solids.	.37
Figure	5-47.	BioWin	Calibration	WAS Gravity Belt Thickener Filtrate COD and cBOD5	.38
Figure	5-48.	BioWin	Calibration	WAS Gravity Belt Thickener Filtrate Nitrogen.	.38
Figure	5-49.	BioWin	Calibration	WAS Gravity Belt Thickener Filtrate Phosphorus.	.38
Figure	5-50.	BioWin	Calibration	Digester Feed Solids.	.39
Figure	5-51.	BioWin	Calibration	Digester Feed Mass Loadings.	.39
Figure	5-52.	BioWin	Calibration	Digester Feed Phosphorus.	40
Figure	5-53.	BioWin	Calibration	Digester Volatile Solids Destruction	40
Figure	5-54.	BioWin	Calibration	Digester Solids.	41
Figure	5-55.	BioWin	Calibration	Digested Sludge Holding Tank Solids.	41
Figure	5-56.	BioWin	Calibration	Digested Sludge GBT Thickened Sludge Flow and Solids.	.42
Figure	5-57.	BioWin	Calibration	DS Gravity Belt Thickener Filtrate Solids	42
Figure	5-58.	BioWin	Calibration	DS Gravity Belt Thickener Filtrate COD and Filtered COD	42

Figure 5	5-59. E	BioWin	Calibration	DS Gravity	Belt Thickener	Filtrate	Nitrogen	 43
Figure 5	5-60. E	BioWin (Calibration	DS Gravity	Belt Thickener	Filtrate	Phosphorus.	 43

List of Tables

Table ES-1. Summary of Plant Influent and Primary Effluent Sample Comparison	2
Table 3-1. Rochester WRP Influent Wastewater Characteristics	. 11
Table 5-1. Steady State BioWin Calibration	. 17
Table 5-2. 1st Stage HPOAS field testing average dissolved oxygen and head space oxygen purity.	.31
Table 5-3. HiPure Steady State Calibration Results	.33

v

Executive Summary

This section provides a summary of the key outcomes from the wastewater characterization and BioWin[™] simulator calibration. The simulator was calibrated to daily plant operating data reported from April 1 through August 31, 2017 and specialized wastewater characterization sampling data from August 20 through 31, 2017. A summary of key findings and conclusions are presented below. Additional testing and evaluations recommended below should be completed prior to, or during, the next project phase.

- Wastewater characterization sampling in August 2017 showed the plant influent contains a high fraction of soluble readily biodegradable organic material and high organic nitrogen content. The influent organic nitrogen includes a higher than normal fraction of soluble non-biodegradable nitrogen (4 percent versus a typical 2 percent) which results in an effluent soluble non-biodegradable nitrogen content of roughly 2 to 3 mg/L. The high soluble nonbiodegradable nitrogen will be critical if trying to reduce effluent total nitrogen discharges to low levels. It is recommended the City begin monitoring industrial users for total Kjeldahl nitrogen (TKN), filtered TKN (1.5 um filter) and ammonia.
- Water Reclamation Plant (WRP) lab reported chemical oxygen demand (COD) concentrations during the August 2017 wastewater characterization testing were consistently 35 percent or higher than measured by Minnesota Valley Testing Laboratories. WRP lab reported COD data is not used in this analysis and the City should continue to investigate its COD analytical procedures to ensure accurate readings.
- BioWin calibration using the reported plant influent and primary effluent data underestimated primary sludge and waste sludge production and mixed liquor suspended solids (MLSS) concentrations. Plant reported data and the August 2017 wastewater characterization data showed high overall sludge production rates and activated sludge yields 25 to 35 percent higher than typically observed. The high solids production means either the influent/secondary influent loadings are higher than reported or the mass of primary wand waste sludge solids generated are less than reported.

The plant staff investigated several factors which could influence the sludge production values such as return sludge meter accuracy and whether representative plant influent and primary effluent samples are collected. Drawdown tests showed the Intermediate Clarifier and Secondary Clarifier 5 return sludge flow (RAS) rates to be within 10 percent of reported values while Secondary Clarifiers 1-4 reported RAS flows were roughly 15 percent higher than reported. Increasing the Secondary Clarifier RAS flow by 15 percent in the BioWin calibration model decreases the 2nd Stage high purity oxygen activated sludge (HPOAS) sludge production but does not close the solids discrepancy. The City conducted 5-day sampling campaigns in November/December 2017 and January 2018 to determine if the plant influent, Primary Clarifier 1/2 and Primary Clarifier 3 effluent loadings are higher than reported. Data collected showed the reported sample concentrations from the existing samplers to be lower than samples collected with an ISCO samplers. Table ES-1 provides a comparison of the ISCO sampler: Existing Sampler measured concentrations. For example, the ISCO sampler COD concentrations were 15 percent higher than the existing plant influent sampler.

Table ES-1. Summary of Plant Influent and Primary Effluent Sample Comparison									
ISCO Sampler: Existing Sampler									
November 28-December 7, 2017/January 2018/April 2018									
ltem	Plant Influent	Primary Clarifier 1/2	Primary Clarifier 3						
COD	/1.15/1.2	/1.2/1.2	1.55/-/						
cBOD5			1.65//						
TSS	/1.4/1.2	/1.2/1.2	1.55//						
TP	/1.0/1.07	/1.1/1.1	1.2//						
TKN	//1.05								

Primary clarifier stress testing and volatile fatty acid (VFA) sampling supports the increase COD and 5-day carbonaceous biochemical oxygen demand (cBOD5) is particulate matter and not soluble organic matter. BioWin (and HiPure) simulations which increased the plant influent and primary effluent particulate concentrations to achieve the multiplication factors below, matched the plant reported primary sludge and waste sludge production and provided a very good correlation to the plant reported operating data including MLSS, airflow, and effluent quality.

- Plant Influent COD, cBOD5, and total suspended solids (TSS) multiplication factors of 1.15, 1.15, and 1,2 respectively.
- Primary Clarifier 1/2 effluent COD, cBOD5, and TSS multiplication factors of 1.2 and total phosphorus (TP) by 1.1.
- Primary Clarifier 3 effluent COD, cBOD5, and TSS multiplication factors of 1.55 and TP by 1.2.

Based upon the subsequent BioWin model calibration and desire to evaluate seasonal changes in influent characteristics during cold weather, the City conducted another 10-day sampling event on the plant influent in April 2018. This sampling data also supports the higher influent concentration/multiplication factors in Table ES-1 but did see an increase in relative soluble concentrations as measured by the filtered COD:total COD ratio. It is recommended the City continue to investigate the sample anomalies to refine the plant loadings and wastewater characteristics.

- Nitrification rate kinetics presented in Technical Memorandum Nitrification Rate Testing (BC, 2017a) were used in the BioWin calibration. Process modeling shows several periods of Secondary Clarifier 1-4 high effluent ammonia not associated with the modeled nitrification rates, but rather something else occurring at the plant. The City should continue to investigate potential causes of the periodic reduced nitrification rates such as influent toxic loadings.
- Primary Clarifier 3 TSS removal is roughly 45 percent. The City should try to reduce the clarifier sludge blanket depths (SBDs) to the minimum level which can achieve the target primary sludge concentrations as the influent volatile fatty acid (VFA) concentrations are sufficient to maintain the Aeration Basin Complex (ABC) phosphorus removal performance. The reduced SBD should help improve primary clarifier TSS removal performance and reduce ABC organic loadings.
- The August 2017 and April 2018 influent wastewater characterization sampling campaigns showed two notably different influent wastewater characteristics. The cold weather sampling (April 2018) had influent nitrate+nitrite concentrations of roughly 2 mg-N/L compared to negligible concentrations in August and April had a higher fraction of ortho-phosphate:TP in the

influent. The plant should continue monitoring influent nitrate+nitrite twice per month to confirm influent loadings and begin measuring the influent phosphate concentration a minimum of twice per week as HPOAS chemical dosing will be directly related to the influent phosphate concentration.

Section 1: Objective

This technical memorandum (TM) summarizes the September 2017 wastewater characterization and subsequent BioWin[™] wastewater treatment whole-plant calibration for the City of Rochester (City) Water Reclamation Plant (WRP). The TM is organized into the following sections

- Executive Summary
- Section 1: Objective
- Section 2: Background
- Section 3: Influent Wastewater Characterization
- Section 4: BioWin Calibration Influent Itinerary
- Section 5: BioWin Calibration
- Section 6: References

Section 2: Background

The WRP liquid stream processes consists of common influent pumping, screening, grit removal, and flow equalization systems. After grit removal, the plant has two liquid stream trains: high purity oxygen activated sludge (HPOAS) and conventional air activated sludge commonly referred to as Aeration Basin Complex (ABC). The HPOAS train consist of rectangular primary clarifiers followed by a two-stage HPOAS system. The first stage HPOAS operates at low solids retention time (SRT) to remove carbonaceous compounds. The second stage HPOAS operates at a SRT greater than 10 days to nitrify ammonia to nitrate. The two stages are fed HPO gas from a cryogenic oxygen generation system. Phosphorus removal in the HPOAS train is primarily accomplished via ferric chloride addition to the primary clarifiers with some trimming using alum in the HPOAS trains if needed. The ABC train has one circular primary clarifier followed by an enhanced biological phosphorus removal (EBPR) nitrifying activated sludge system. The ABC plant operates independently of the HPOAS train except that primary influent flow can be split between the two treatment trains as a way of load balancing. Effluent from each secondary treatment train is blended and then routed to the chlorine contact tanks for disinfection.

Primary solids are thickened in the primary clarifiers. Waste activated sludge (WAS) from each activated sludge system is blended and thickened using gravity belt thickeners (GBTs). Thickened sludges are pumped to mesophilic anaerobic digesters (MAD). Digested biosolids are fed to a sludge holding tank and then thickened using GBTs. Thickened biosolids are then pumped to sludge storage tanks for land application. Recycle streams from the GBTs are routed to the head of the plant influent/equalization. Figure 2-1 provides a simplified plant flow schematic and Figure 2-2 shows a plant layout drawing.

Figure 2-1. Rochester WRP Flow Schematic.

Figure 2-2. Rochester WRP Plant Layout.

2.1 BioWin Calibration Configuration

BioWin[™] Version 5.3 (EnviroSim Associates Limited, Hamilton, Ontario, Canada) was used for the wastewater treatment plant model calibration. Figure 2-3 shows the WRP whole-plant BioWin simulator calibration configuration. The BioWin configuration and calibration are based on plant operating data and wastewater characterization data collected from April 1 through August 31, 2017. During this period all process units and tankage were in service except for 1 of 2 1st stage HPOAS reactor trains were in service (outside of 11 days in May/June).

Figure 2-3. Rochester WRP BioWin Calibration Flow Schematic.

The plant calibration configuration includes all key liquid and solids stream processes as follows:

- HPO train primary clarifier (PC) operations consist of three model units. The two PCs are combined into one PC (PC1/2) with an equivalent total surface area and solids pumping rate. To account for colloidal/soluble chemical oxygen demand (COD) removal from ferric chloride addition which cannot be modeled in a clarifier module, the HPO train PCs include a model builder unit (Col. COD Conv) for capturing colloidal COD and a ferric chloride addition module (Fe to PC1/2). The ABC PC (PC3) is configured as a single PC unit.
- The one first stage HPOAS train consists of three staged bioreactors (FS-1 through FS-3) followed by a single model clarifier (Int. Clar) representing Intermediate Clarifier 1-4 total surface area and return sludge pumping rate.
- The second stage HPOAS train consists of three staged bioreactors (SS-1 through SS-3) followed by a single model clarifier (SC 1-4) which represent the total second stage bioreactor volume and Secondary Clarifier 1-4 surface area/return sludge pumping rate. A primary effluent bypass to the second stage HPOAS is also provided to simulate PE flows routed directly to second stage.
- The two ABC basins are combined into one BNR train (ABC-Ana through ABC-4). Anaerobic, anoxic and aerobic zone volumes are based upon the total volume of each zone type when in operation. The ABC basins were operated in an anaerobic/oxic (A/O) configuration for all the calibration period except the first 11 days. The ABC aeration oxygen transfer modeling parameters were updated based upon the off-gas testing results presented

in TM Aeration Basin Off-Gas Testing (BC, 2017b). The ABC secondary clarifier (SC5) is modeled as a single unit.

- The HPOAS and ABC train alum feeds (HPO alum and ABC alum) are also included in the model. BioWin only allows the chemistry of one metal salt (Fe or Al) to be modeled at a time. As such, the model ferric chloride feed rate was adjusted to match the same quantity of chemical sludge produced from alum addition. The metal:P ratio of alum and ferric differ, so TP reduction will not be fully accurate.
- The chlorine contact tanks downstream of the secondary clarifiers are not incorporated into the model.

Section 3: Influent Wastewater Characterization

Process simulation modeling requires accurate characterization of the influent carbon, nitrogen and phosphorus fractions shown in Figure 3-1

Figure 3-1. Graphical Representation of BioWin™ Influent COD, TKN and TP fractions.

The City conducted several sampling campaigns to define the influent wastewater characteristics. The first sampling campaign was conducted in August 2017 to characterize the plant influent along with liquid and solid stream process operations. Table 3-1 summarizes the influent wastewater characteristics measured during the sampling period. Appendix A contains the wastewater characterization sampling plan.

Subsequent data analysis and BioWin model calibration, suggested the plant influent organic loadings (COD, cBOD5, TSS,..) are higher than measured/reported. As such the City conducted two 5-day sampling events in November/December 2017 in which samples were collected from the plant influent, Primary Clarifier 1/2 effluent and Primary Clarifier 3 effluent using the plants existing samplers and portable ISCO type samplers. Samples from each sampler were tested for TSS, COD, and TP. Testing results consistently showed the ISCO TSS samples to be 20 to 45 percent greater than reported values (existing Sonford sampler) and ISCO COD samples to be 10 to 20 percent greater than reported values as summarized in Table ES-1. No quantifiable differences in influent TP were observed.

Comparison of the influent soluble COD:total COD ratios from the VFA grab sampling conducted during the August 2017 special sampling and HPO train primary clarifier testing suggests the increase in influent COD is associated with particulate material and soluble COD is not impacted. Based upon these results and BioWin calibration, the reported plant influent COD and cBOD5 particulate concentrations were increased to increase the overall COD concentration by 15 percent and the reported TSS and volatile suspended solids (VSS) increased by 35 and 31 percent respectively as shown in Table 3-1.

The last sampling campaign was completed in April 2018. Additional information on this sampling campaign and its results are provided in Section 3.2.

Table 3-1. Rochester WRP Influent Wastewater Characteristics								
		August 2017 Reported		Aug 2017 Adjusted	BloWin	April 2018		Typical
Item	Units	Average	Range	Data ¹	Calibration	Average	Range	Fractions ²
Flow	mgd	14.2	13.2 - 14.8			12.5	11.6 - 13.2	
Temperature	с	18.8	18.2 - 19.4			12.0	12.0 12.0	
5-Day Carb Biochemical oxygen demand						12.9	12.0 - 13.0	
(CBOD5)	mg/L	343	264 - 428	394		452	374 - 537	
Soluble CBOD5 (1.5 um)	mg/L	148	101 - 229			243	213 - 283	
Total suspended soids (TSS)	mg/L	229	156 - 354	308		298	210 - 592	
Volatile suspended solids (VSS)	mg/L	206	135 - 318	268		262	184 - 546	
Alkalinity (as CaCO3)	mg/L	414	389 - 431			380	358 - 389	
Chemical Oxygen Demand								
Chemical Oyxgen Demand (COD)	mg/L	648	474 - 833	745		783	634 - 928	
Soluble COD (1.5um filter)	mg/L	309	257 - 430			407	348 - 463	
Flocculated and Filtered COD	mg/L	200	148 - 295			285	258 - 350	
Volatile Fatty Acids (as COD)	mg/L	27	25 - 32			40	24 - 66	
Nitrogen								
Total kjeldahl nitrogen (TKN)	mg N/L	40	36 - 53			44	41 - 47	
Soluble TKN (1.5 um)	mg N/L	30	28 - 32			38	37 - 40	
Ammonia (NH3-N)	mg N/L	21	17 - 22			25	24 - 26	
Nitrate+Nitrite (NOX-N)	mg N/L	0.1	0.1 - 0.4			1.8	1.5 - 2.7	
Phosphorus								
Total phosphorus (TP)	mg P/L	7.5	6.2 - 9.4			7.7	6.6 - 8.7	
Soluble phosphorus (1.5 um)	mg P/L	4.2	3.7 - 4.9			5.0	4.4 - 5.7	
Ortho-phosphate (PO4-P)	mg P/L	4.2	3.4 - 4.9			5.2	4.5 - 6.2	
COD fractions								
Readily biodegradable (Fbs)	g/g TCOD	0.29/(0.28) ³	0.17 - 0.30	0.25	0.262	0.34/(0.27) ³	0.28 - 0.39	0.11 - 0.27
Unbiodegradable soluble (Fus)	g/g TCOD	0.042	0.02 - 0.07	0.037	0.037	0.024	0.02 - 0.03	0.03 - 0.09
Unbiodegradable particulate (Fup -								
estimated)	g/g TCOD				0.13			0.11 - 0.24
Acetate:Readily biodegradable COD (Fac)	g/g RBCOD	0.20	0.12 - 0.26		0.21	0.18	0.12 - 0.30	0.08 - 0.47
estimated)	g/g TCOD	-			0.57	-		0.68 - 0.85
Nitrogen Fractions	88							
Ammonia-N:TKN (Fna)	g/g TKN	0.53	0.42 - 0.60		0.53	0.57	0.54 - 0.61	0.5 - 0.73
Soluble TKN:TKN	g/g TKN	0.75	0.59 - 0.83		_	0.85	0.80 - 0.89	
Particulate organic nitrogen (Fnox)	g/g OrgN	0.52	0.40 - 0.70		0.40	0.34	0.26 - 0.45	0.41 - 0.71
Phosphorus Fractions	00.0							
Phosphate-P:TP (Fpo4)	g/g TP	0.56	0.46 - 0.60		0.55	0.67	0.61 - 0.73	0.4 - 0.68
Other								
COD:BOD5	g/g	1.9	1.7 - 2.1			1.74	1.6 - 2.2	1.8 - 2.7
COD:TKN	g/g	16	13 - 21	18		18	15 - 22	10 - 18
COD:TP	g/g	87	75 - 109	100		102	83 - 122	65 - 110
Solube COD:COD	g/g	0.50/(0.49) ³	0.37 - 0.56	0.44		0.52/(0.54) ³	0.46 0.62	
ffCOD:COD	g/g	0.33/(0.32) ³	0.2 - 0.4	0.29		0.37/(0.30) ³	0.30 - 0.41	0.19 - 0.34
VSS:TSS	g/g	0.90	0.8 - 0.9	0.87		0.88	0.68 - 0.01	0.8 - 0.9
Particulate COD:VSS	g/g	1.59	1.3 - 2.3	1.58	1.55	1.53	0.92 - 1.82	1.35 - 2.1

1. Only adjusted values shown

2. Based upon Brown and Caldwell wastewater sampling database.

3. Fraction based upon composite samples/VFA grab samples

3.1 Wastewater Characteristics – August 2017

The adjusted COD data shows that 25 percent of the influent COD is readily biodegradable (Fbs) and matches well with the VFA/COD grab sample Fbs of 0.28. In addition, the adjusted flocculated and filtered COD(ffCOD):COD ratio of 0.29 matches well (within 10 percent) with the VFA sampling fraction of 0.32 and the adjusted soluble COD:COD ratio of 0.44 is also within 10 percent of the VFA sampling fraction. These correlations along the primary clarifier testing data support the assumption that the increase in COD is associated particulate COD.

The final BioWin calibration uses an Fbs of 0.263 as a blend of these two Fbs values. The influent soluble unbiodegradable COD (Fus) of 0.037 is on the lower side but within the range of typical municipal wastewaters. The influent VFA concentration averaged 20 mg/L as COD representing a VFA:readily biodegradable COD fraction (Fac) of 0.2 which is also typical

The influent ammonia to total Kjeldahl nitrogen (TKN) fraction (Fna) of 0.53 is low for municipal wastewater and most likely due to organic nitrogen from local industries. The ortho-phosphate (PO4-P):TP (F_{PO4}) ratio of 0.56 is typical of municipal influents.

It is often useful to evaluate several additional wastewater characteristics in assessing data validity, seasonal variations, and general wastewater characteristics. These data are useful to consider as there is usually considerable day-to-day variation in concentration values; however, the ratio of COD:TKN, for example should not show large fluctuations. Table 3-1 shows several "other" parameter ratios measured during the August 2017 sampling event are typical of municipal wastewater

Attachment B contains the August 2017 daily wastewater characterization data and two 5-day comparative sampling program results.

3.2 Wastewater Characteristics – April 2018

Based the BioWin model calibration need to include influent "adjustment factors" and recommendation to evaluate seasonal changes in influent characteristics during cold weather, the City conducted a 10-day sampling event on the plant influent in April 2018. Table 3-1 summarizes the influent sampling data which was collected with an ISCO sampler and Table ES-1 compares the ISCO and existing sampler data.

April 2018 sampling data shows the ISCO COD and TSS sample concentration to be 20 percent greater than measured with the existing sampler. Based upon this data, the previous two comparative sampling campaigns, and BioWin calibration no change to the influent COD, cBOD5, and TSS adjustment factors used in the BioWin calibration were recommended. The plant also sampled for TKN and TP and found the ISCO and existing sampler concentrations to be within 10 percent and the difference is considered negligible.

Table 3-1 summarizes the results of the April 2018 influent wastewater characterization results. The Fus of 0.024 was slightly less than measured in August 2017 (0.037). This difference is considered negligible. Similar to the August sampling, the Fbs measured using the composite samples (0.34) was higher than measured during VFA grab sampling (0.27). This analysis will continue to use the Fbs of 0.263 based upon the VFA sampling event Fbs.

The influent Fna of 0.57 is slightly higher than measured in August 2017 (0.53). At an average influent TKN of 40 mg/L, the increase in Fna would increase the ammonia concentration from 21.2 to 22.8 mg-N/L. This increase in ammonia is less than 10 percent and considered negligible. It should be noted that nitrate+nitrite measured during the April sampling event averaged 1.8 mg-N/L (180 lb-

N/d). Figure 3-2 shows the influent nitrate+nitrite concentration measured since January 2017. The influent nitrate+nitrite comes from industrial sources and appears to be seasonal with highest concentrations in late Winter/early Spring when wastewater temperatures are cold. This BioWin calibration maintains the influent nitrate at zero, however the alternative analysis will include nitrate in the influent when simulating colder weather periods. The plant should continue to measure the influent nitrate+nitrite concentration twice per month to influent nitrate+nitrite loadings.

Figure 3-2. Rochester WRP Influent Nitrate+Nitrite Concentrations.

The April 2017 influent F_{P04} ratio of 0.67 is 17 percent higher than measured in August 2018. A BioWin calibration simulation using the April Fna of 0.57 and F_{P04} of 0.67 showed changing the fractions did not impact predicted effluent quality, diurnal profiles, airflows or solids generation. The final calibration uses an F_{P04} ratio of 0.62. The plant should begin measuring the influent phosphate concentration once or twice per week as HPOAS chemical dosing will be directly related to the influent phosphate concentration.

Attachment C contains the April 2018 daily wastewater characterization data results.

Section 4: BioWin Calibration Influent Itinerary

As presented in Section 3, BioWin[™] uses COD, TKN, and TP as the basis for process simulations. The model allows the user to input influent flow, COD, TKN, TP, alkalinity, inert suspended solids (ISS), nitrate, pH, alkalinity, and temperature. Using the wastewater fractions in Table 3-1, BioWin will calculate additional influent parameters such as filtered COD, cBOD5, TSS, VSS, ammonia, and PO4-P. The plant influent calibration itinerary was developed using plant operating data and wastewater characterization data from April 1 through August 31, 2017. Where influent concentration data was not available (i.e. the plant did not sample that day) the 30-day moving average loading was calculated and used as a basis for the influent load/concentration.

Figures 4-1 through 4-5 show the key plant influent itinerary inputs for the BioWin calibration. Plant reported values are shown using square icons and BioWin predicted values are shown in lines. Calculated influent COD is based upon the reported influent cBOD5 concentration (adjusted) and the COD:cBOD5 ratio measured during the August 2017 wastewater characterization sampling period. The influent TSS and VSS itinerary are calculated in BioWin based upon the influent COD characteristics and inert suspended solids concentrations. The plant reported TSS and VSS were adjusted by a factor of 1.35 and 1.31, respectively as noted above. Calculated influent TKN and phosphate concentrations assume an Fna and F_{P04} of 0.53 and 0.62 respectively.

Figure 4-1. BioWin Calibration Plant Influent Flow and Temperature Itinerary.

Figure 4-2. BioWin Calibration Plant Influent COD and cBOD5 Itinerary.

Figure 4-4. BioWin Calibration Plant Influent TKN and Ammonia Itinerary.

Figure 4-5. BioWin Calibration Plant Influent TP and Phosphate Itinerary.

Section 5: BioWin Calibration

The BioWin simulator calibration consists of a two-step process. Step 1 calibrates the simulator to steady- state conditions using the average plant reported value from April 1 through August 31,2017. Step 2 further validates the model liquid stream process output and key solids stream outputs under a dynamic simulation using the daily measurements observed during this same period.

Simulator calibration generally involves combining the "operational" or "controllable" aspects of the treatment plant with the input wastewater characteristics and adjusting selected parameters to fit a set of plant performance data. It should be noted that often it is not possible to adjust simulator parameters such that an exact match between predicted and observed values is achieved. Rather, the goal in calibrating a simulator is to achieve a good correlation between the overall trend of predicted and observed values while minimizing the error between datasets and simulator predictions. It also is crucial to observe the simulator fit to all important variables. It is preferable to fit to most of the measured variables reasonably, rather than fit perfectly to one selected (albeit perhaps important) component concentration and poorly to others.

5.1 Step 1 - Steady State Calibration

Tables 5-1 compares the measured and simulated constituent concentrations for the liquid and solids stream flows respectively. The BioWin[™] predicted values correlate very well with the reported values on a steady-state basis. Several noteworthy items are discussed further below:

- Reported Primary Clarifier 1/2 effluent COD, cBOD5, TSS, and TP concentrations equal 1.2*, 1,2*, 1.2* and 1.1*measured value respectively based upon January 2018 testing (see Attachment A) The predicted cBOD5 is slightly higher than reported (adjusted) as the effluent TSS is 8 percent higher and the cBOD5 adjustment factor of 1.2 was assumed based upon the COD adjustment factor.
- Predicted Primary Clarifier 1/2 effluent TP is higher than reported because the BioWin Fe:P molar ratio for chemical phosphorus removal was increased from 1.6 to 2.5 to prevent phosphorus limited conditions in the second stage HPOAS. As such, chemical phosphorus removal in the primary clarifiers, activated sludge systems, and digesters is less than observed in the field.
- Reported Primary Clarifier 3 effluent COD, cBOD5, TSS, and TP concentrations equal 1.55*, 1,55*, 1.55* and 1.2*measured value respectively based upon January 2018 testing (see Attachment A) The Primary Clarifier 3 adjustment factors are believed to be higher than Primary Clarifier 1/2 as a result of the non-representative sampling location from the primary effluent piping and lower TSS removal in Primary Clarifier 3.
- Predicted First Stage HPOAS effluent cBOD5 and TSS are higher than reported as the reported data are sampled only once per week which skews the average value lower.
- Solids production and digester VSS destruction are within 10 percent of reported values.
- WRP lab reported influent and Primary Clarifier 3 effluent COD is not compared to the predicted values as the WRP lab data was 35 to 50 percent higher than measured by Minnesota Valley Testing Laboratories (MVTL) during the wastewater characterization testing and use of the WRP lab COD data results in nutrient limitations in both the HPOAS systems and excessively higher airflows in the ABC train.

Table 5-1. Steady State BioWin Calibration						
Item	Units	Reported	Predicted	Difference		
Plant Influent ^a						
Flow	mgd	14.7	14.7	0%		
COD	mg/L		718	NA		
cB0D5	mg/L	370	372	1%		
TSS	mg/L	278	285	2%		
Ammonia	mgN/L	21.5	21.5	0%		
ТР	mg/L	6.4	6.3	-2%		
Primary Clarifier 1/2 Effluent						
Flow	mgd	11.8	11.6	-1%		
COD	mg/L	NA	394	NA		
cBOD5	mg/L	188	222	18%		
TSS	mg/L	92	100	8%		
Ammonia	mgN/L	29.8	30.3	2%		
ТР	mg/L	4.5	5.7	26%		
Primary Clarifier 3 Effluent						
Flow	mgd	3.7	3.7	-1%		
COD	mg/L		545	NA		
cBOD5	mg/L	317	296	-7%		
TSS	mg/L	173	170	-1%		
Ammonia	mgN/L	31.5	30.3	-4%		
ТР	mg/L	7.7	7.6	-1%		
First Stage HPOAS						
MLSS	mg/L	2169	2047	-6%		
MLVSS	mg/L	1906	1777	-7%		
Effluent TSS	mg/L	21	34	13 mg/L		
Effluent cBOD5	mg/L	16	25	9 mg/L		
Effluent Ammonia	mgN/L	25.2	26.7	1.5 mg-N/L		
Effluent TP	mg/L	1.3	2.0	0.7 mg-P/L		
Second Stage HPOAS						
MLSS	mg/L	3108	3125	1%		
MLVSS	mg/L	2657	2590	-2%		
Effluent TSS	mg/L	13	10	-3 mg/L		
Effluent cBOD5	mg/L		2.9			
Effluent Ammonia	mgN/L	1.3	0.1	-1.2 mg-N/L		
Effluent TP	mg/L	1.1	2.1	1.0 mg-P/L		
ABC Complex						
MLSS	mg/L	2759	2800	1%		
MLVSS	mg/L	2262	2110	-7%		
Effluent TSS	mg/L	8	10	2 mg/L		
Effluent cBOD5	mg/L	3.8	3.7	-0.1 mg/L		
Effluent Ammonia	mgN/L	0.16	0.2			
Effluent Nitrate	mgN/L		14.8	NA		
Effluent TP	mg/L	0.5	0.5	0. mg/L		

Table 5-1. Steady State BioWin Calibration						
Item	Units	Reported	Predicted	Difference		
Primary Sludge						
PC 1/2 TSS	mg/L	3.2	3.4	8%		
PC 1/2 TSS	lb/d	23,226	25,325	9%		
PC1/2 VSS:TSS		80%	83%	3.5%		
PC 3 TSS	mg/L	3.05	3.1	2%		
PC 3 TSS	lb/d	4,204	4,285	2%		
PC3 VSS:TSS		83%	86%	4%		
Waste Activated Sludge						
First Stage HPOAS TSS	mg/L	6108	5660	-7%		
First Stage HPOAS TSS	lb/d	14,561	13,390	-8%		
Second Stage HPOAS TSS	mg/L	8,392	8,285	-1%		
Second Stage HPOAS TSS	lb/d	1,823	1,665	-8%		
ABC Complex TSS	mg/L	6,469	6,285	-3%		
ABC Complex TSS	lb/d	5,593	5,345	-4%		
Blended Sludge						
Flow	mgd		0.14	NA		
TSS	% TS	4.04	4.1	1%		
TSS	lb/d	46,264	47,810	3%		
VSS	% VS	3.22	3.4	6%		
Digester 5/6						
TSS	% TS	2.06	1.8	-13%		
VSS	% VS	1.26	1.1	-13%		
VSS Destruction	Percent	67	68	1%		
Digested Sludge GBT						
Feed rate	mgd		0.14			
Feed TS	% TS	1.64	1.8	10%		
Thickened TS	% TS	6.5	6.1	-6%		
Thickened TS	lb/d	18,445	18,815	2%		

a. Reported Plant Influent COD, cBOD5, and TSS concentrations = 1.15, 1.15, 1.351* reported value respectively based upon January 2018 testing. Reported Primary Clarifier 1/2 effluent COD, cBOD5, TSS, and TP concentrations = 1.2, 1.2, 1.2 and 1.1*

b. reported value respectively based upon January 2018 testing. Reported Primary Clarifier 3 effluent COD, cBOD5, TSS, and TP concentrations = 1.55, 1.55, 1.55 and

с. 1.2* reported value respectively based upon January 2018 testing.

5.2 Step 2 – Dynamic Calibration

This section presents the dynamic calibration results for both the liquid and solids stream processes. Similar to Section 3, plant reported values are shown using square icons and BioWin predicted values are shown in lines.

5.2.1 Primary Influent

Figures 5-1 through 5-5 show the primary influent predicted and reported values. The plant reported primary influent COD, cBOD5, TSS, and VSS use the same adjustment factors as applied to the plant influent. The predicted values match very well with the reported data. Primary influent TP/phosphate concentrations are higher than reported values due to the high Fe:P molar ratio allows more phosphate to be recycled back in the digested sludge GBT filtrate.

Figure 5-3. BioWin Calibration Primary Influent TSS and VSS.

Figure 5-5. BioWin Calibration Primary Influent TP and Phosphate.

5.2.2 Primary Clarifier 1/2

Primary Clarifier 1/2 performance was modeled in a two-step process. The first step uses a model builder to convert colloidal/soluble COD to particulate COD. The second step is an ideal primary clarifier with 72.5 percent TSS removal (based upon TSS after the Step 1 model builder) and reported primary sludge flow rates. The BioWin ideal primary clarifier TSS removal rate is slightly higher than the plant reported average TSS removal of 68 percent since FeCl3 and colloidal solids are not accounted for the WRP calculations. The primary clarifier was configured with a 1-foot sludge blanket to match the average sludge blanket recorded during the calibration period. The colloidal COD conversion step (Step 1) is necessary to match the reported cBOD5 removal rates of roughly 40 to 45 percent, soluble cBOD5 removal rates of roughly 15 percent, and effluent filtered (soluble) COD as shown in Figure 5-7. Primary Clarifier 1/2 COD removal rates average 40 percent. Figure 5-8 shows the BioWin predicted plant influent and primary effluent VFA concentrations as mg COD/L. The BioWin input matches well the reported plant influent VFA concentrations. On two occasions, the VFA concentration in the primary effluent was much higher than the influent concentration. The higher VFAs could be the result of fermentation reactions in the primary clarifiers or changes in the influent VFA concentration not captured by the VFA grab samples (time offset). Simulations with the primary clarifier biological reactions in "ON" could not duplicate the increase in VFA concentration. This calibration conservatively assumes the change in VFA concentration is due to difference in plant influent VFAs rather than sludge fermentation.

Figures 5-9 and 5-10 shows the predicted effluent TSS, VSS, TKN, and ammonia match very well with reported data. Figure 5-11 shows the predicted primary effluent phosphate and TP are higher than reported for the reasons previously provided above.

Figure 5-12 shows the predicted primary sludge solids concentration and trend match very well with the plant data. This observation, along with the January 2018 plant influent and primary clarifier 1/2 effluent sampling support the use of the influent and primary effluent "adjustment factors".

Figure 5-6. BioWin Calibration Primary Clarifier 1/2 Effluent COD and cBOD5.

Figure 5-8. BioWin Calibration Influent and Primary Effluent Volatile Fatty Acids.

Figure 5-10. BioWin Calibration Primary Clarifier 1/2 Effluent TKN and Ammonia.

Figure 5-11. BioWin Calibration Primary Clarifier 1/2 Effluent TP and Phosphate.

5.2.3 Primary Clarifier 3

Primary Clarifier 3 is modeled as ideal primary clarifier with 45 percent TSS removal and reported primary sludge flow rates. Predicted cBOD5 and COD removal rates averaged 25 and 20 percent respectively. The primary clarifier was configured with a 4-foot sludge blanket to match the average sludge blanket recorded during the calibration period. Figures 5-13 through 5-17 show the predicted Primary Clarifier 3 performance matched well with the reported nutrient data and adjusted TSS and cBOD5 data. The predicted Primary Clarifier 3 effluent TSS and COD were higher during the end of the calibration period because of high influent COD/TSS concentration, but overall provides a good fit.

Figure 5-16. BioWin Calibration Primary Clarifier 3 Effluent TP and Phosphate.

Figure 5-17. BioWin Calibration Primary Clarifier 3 Sludge Flows and Concentrations.

5.2.4 ABC Aeration Basins

The ABC activated sludge calibration focused on matching the mixed liquor suspended solids (MLSS), MLVSS, total airflow, and nutrient profiles. Figure 5-18 shows the predicted MLSS matches very well with the reported average MLSS and the predicted MLVSS:MLSS is slightly lower than reported for ABC Basin 3. The predicted total airflow in Figure 5-19 also matches the reported values very well using the oxygen transfer coefficients presented in Technical Memorandum Aeration Basin Off Gas Testing (BC, 2017b). Figures 5-20 show six phosphate profiles over a three-day period. Nutrient profiles were collected in the morning and afternoon of each test day. In general, the model predicted phosphate (P) release is higher than measured with slower P uptake in the aerated zones. The difference in profile can be associated with several factors including slightly higher phosphate levels in the Primary Clarifier 3 effluent, alum addition to ABC during this period, and sampling location differing from modeled location. In general, the model shows a good release and uptake by the end of the aerated zones and is considered calibrated for facility evaluation.

Predicted ammonia and nitrate/nitrite profiles in Figures 5-21 and 5-22 match well with reported data with some slight differences depending upon the downstream aerated sampling locations. It should be noted the nitrification rate kinetics measured in the nitrification rate tests (BC, 2017a) are used in the BioWin simulations. Plant staff have noted that inhibition observed during the sampling event does not always occur at the plant. The City should continue to investigate potential causes of the periodic reduced nitrification rates such as influent toxic loadings.

<u>Parameter</u>	<u>Units</u>	Model Default	BioWin Calibration
AOB maximum specific growth rate	1/d	0.9	0.7
NOB Maximum specific growth rate	1/d	0.7	0.65
	Brown	n 👐 Caldwell	

Figure 5-19. BioWin Calibration ABC Total Airflow.

Figure 5-20. BioWin Calibration ABC Phosphate Profile.

Figure 5-22. BioWin Calibration ABC Nitrate+Nitrite Profile.

5.2.5 ABC Secondary Clarifier 5

Figure 5-23 shows predicted effluent TSS concentrations match well with measured values using a TSS removal efficiency of 99.8 percent. Figure 5-24 shows the predicted cBOD5 also match well with the measured values. Figure 5-25 shows the predicted effluent ammonia matches well with reported data except for a 3-day period in mid-April when high flows were observed at cold temperatures. During this period the influent TKN loadings were estimated. To match the measured effluent TKN concentration in August, the influent soluble non-biodegradable TKN ratio was increased from 0.02 to 0.04. The predicted effluent nitrate+nitrite (NOx) trends with the calibration period data from ABC Basin 3 effluent with slightly lower NOX predicted during the August 2017 sampling period. Figure 5-28 shows the predicted TP and phosphate match the reported values very well except for the 3-week period the plant observed high phosphate concentrations which could have been associated with a sludge bulking event immediately prior to the high effluent phosphorus period. Figure 5-29 shows the predicted RAS concentrations matches very well with the reported data.

Figure 5-29. BioWin Calibration Secondary Clarifier 5 Return Sludge Flow and TSS.

5.2.6 1st Stage HPOAS

The 1st Stage HPOAS system was evaluated using two biological process simulators: BioWin whole plant simulator and HiPure. BioWin is used to model the whole plant including the reactor biological reactions (carbonaceous BOD removal, nitrification, and fate of nutrients) and solids generation (mixed liquor, return sludge, and waste sludge). BioWin is limited in modeling High Purity Oxygen (HPO) systems as reactor element limits the maximum reactor D0 to 14 mg/L and does not model the gas and liquid phase transfer in the tank headspace. HiPure, developed by Dr. Michael Stenstrom of the University of California in Los Angeles, models the oxygen transfer by simulating the kinetics of gas transfer in the reactor headspace, both for oxygen into solution and for carbon dioxide and water vapor that are stripped from solution in concert with the reaction kinetics of the

biomass in the mixed liquor. Unlike BioWin, HiPure can predict the gas partial pressure in each stage, enabling the user to predict plant capacity limits that might result from oxygen transfer limitations and evaluate how the load may be distributed within the plant to maximize the utilization of the transfer devices. Consequently, the simulators are complementary with respect to the information that may be gained from them.

5.2.6.1 BioWin 1st Stage HPOAS Analysis.

Figures 5-30 and 5-31 show the measured and predicted MLSS, MLVSS, and intermediate clarifier effluent TSS concentrations match very well with reported values. To match the intermediate clarifier effluent TSS, the clarifier TSS removal performance had to be adjusted on a daily basis to best match the effluent TSS, especially in August when a combination of poor sludge quality and a clarifier collector leaking seal resulted in effluent TSS concentrations of 100 mg/L or higher. The high effluent TSS also caused high effluent cBOD5 concentrations observed in Figure 5-32. The plant cBOD5 values shown for August 21-23, and 25th were identified to be "greater than reported" and not considered representative. Figure 5-33 compares the predicted intermediate clarifier effluent COD concentrations with reported values from the August 2017 wastewater sampling period. The model predicted COD follows the general trend of the overall COD data, is slightly conservative to the overall data set, and is considered more representative than the cBOD5 data. Figure 5-34 and 5-35 show the predicted nitrogen discharges match the reported data very well since no nitrification is occurring and effluent phosphorus concentrations are slightly greater than reported due to the high Primary clarifier 1/2 effluent phosphorus concentrations (Fe:P molar ratio assumption used). Figure 5-36 shows the predicted intermediate clarifier return sludge TSS concentration matches well with the reported values, even with concerns of a leaking collector seal.

Figure 5-30. BioWin Calibration 1st Stage HPOAS MLSS and MLVSS.

Figure 5-31. BioWin Calibration 1st Stage HPOAS Effluent TSS.

Figure 5-33. BioWin Calibration 1st Stage HPOAS Effluent COD.

Figure 5-34. BioWin Calibration 1st Stage HPOAS Effluent Nitrogen.

Figure 5-35. BioWin Calibration 1st Stage HPOAS Effluent Phosphorus.

Figure 5-36. BioWin Calibration 1st Stage HPOAS Clarifier Return Sludge Flow and TSS.

5.2.6.2 HiPure Oxygen Transfer Analysis.

The HiPure activated sludge model can predict HPOAS system oxygen, nitrogen and carbon dioxide head space gas purities and dissolved liquid stream concentrations making it ideal for determining the aeration capacity of the 1st Stage reactors. To calibrate the HiPure model, oxygen transfer field testing on the 1st Stage reactors was conducted starting on August 28 and ending on August 30, 2017. Field measurements were made every four to eight hours on parameters specific to the calibration of the HiPure simulator including the Train 1 mixed liquor DO concentrations and head space oxygen purity for all three stages and vent gas flow. In addition, daily and discrete samples of the 1st Stage influent, MLSS, RAS, and TSS, and effluent were collected at 2-hour intervals to define the reactor loadings. Table 5-2 summarizes the 1st Stage reactor average DO and head space oxygen purity measured during testing. Attachment D contains the 1st Stage field testing data.

Table 5-2. 1s	t Stage HPOAS field tes	ting average dissolved o	oxygen and head space	oxygen purity.
	Day 1 – Aver	age (Range)	Day 2 Aver	age (Range)
	DO	Head Space Oxygen	DO	Head Space Oxygen
Reactor Stage	mg/L	Percent O ₂	mg/L	Percent O ₂
1	15 (11-19)	69 (63 to 77)	11.5 (9.7-12.8)	55 (48 - 58)
2	>17 (12.7to >20)	62 (52 to 72)	11.3 (8.9 - 14.2)	41 (37 - 48)
3	>16 (12.4 to >20)	58 (41 to 70)	10.5 (7.4 - 15.1)	33 (25-44)

Day 1 sampling occurred on August 28 10:30 am through 8:30 am on August 29, 2018. Day 2 sampling occurred on August 29 11:45 am through 8:45 am on August 30, 2018.

When performing HPO oxygen transfer evaluations, the vent gas purity and vent gas flow rate are routinely measured. Vent gas oxygen purity should equal the Stage 3 oxygen purity which was generally true during testing. Gas flow though the vent gas control system occurs because the reactor stages are under slight positive pressure, usually two to three inches of water column. During evening measurements there were occasions when the Stage 3 pressure would drop below atmospheric meaning that no gas sample could be collected. This is typical of systems with leaky tanks or operation without pressure control. When the HPO oxygen generation system is set at constant flow rate, it means that oxygen flow is usually too low during high loading periods and too high during low loading periods. Based upon measured diurnal loadings, the periods in which vent gas could not be measured occurred at both high and low loadings suggesting excessive leakage of HPO gas from the reactor. Excessive reactor gas leakage makes it very difficult if not impossible to obtain a pressure feedback signal for control. Hence, the cryogenic oxygen plant is operated at high rate to provide a margin of safety.

To understand the reasons for low reactor gas pressure, several observations were made. A Teledyne 320 oxygen probe was used detect leakage at cracks as the meter responds quickly to oxygen content. By holding the probe next to a suspected leak, the probe's meter will quickly indicate more than 21% oxygen where leaks occur. The probe was used in numerous points around Stages 1 and 2 reactors. Several leaking joints were found. The joints that had been patched previous by the plant staff were tested and generally found to be not leaking. A leakage inspection of the Stage 1 reactor near the end of HPO testing was conducted. There is a lot of piping around this part of the reactor, which includes piping for HPO gas entry, a pressure sampling port, the ventilators to exhaust the reactors in the case of hydrocarbon detection, and a pressure relief valve. A leak caused by corrosion was found on a ³/₄-inch galvanized pipe cap with gas flowing from the cap/line. The cap was replaced and the leak plugged. The large lines connecting the ventilation blowers to the tank were not leaking.

During the first day of testing, the 1st Stage reactors operated at high DO concentrations and elevated headspace oxygen purity. Typical HPO plants operate with approximately 40% oxygen purity in the last reactor stage. However, during field testing, the Stage 3 oxygen purities were more than 60% on the first day. The high operating DOs and Stage 3 oxygen purity means that the oxygen utilization is low and the HPO gas flow rate could be decreased. Typical HPO oxygen utilizations are 85 to 90 percent of the supplied HPO oxygen mass. It is estimated only 44 percent of the supplied oxygen mass was being utilized during the first day of testing. As a result, the HPOAS train loading on the second day was increased reducing the average DO and head space levels to more typical values. Unfortunately, headspace purity could not be consistently measured during this period, so the HiPure calibration focused on the DO and oxygen purity field data collected on the first day of testing.

The HiPure model was calibrated to the average value of the August 2017 wastewater characterization data as shown in Table 5-3. The average influent COD, cBOD5, TSS, and VSS concentrations represent the "adjusted" values as used in the BioWin calibration. It should be noted that during this time the plant was experiencing filamentous bulking. To calibrate the HiPure simulator, alpha factors of 0.8 and 0.70 were used for Stage 1 and the subsequent two stages, respectively, where alpha is the ratio of oxygen transfer in process water to that in clean water. Alpha values are affected by the nature of the wastewater as well as the device used to transfer oxygen. These values are a little lower than typical (0.8 to 0.9) which was attributed to the lower power density in the reactor stages. For example, the WRP power densities of 2.3, 1.5 and 1.5 hp/1000ft³ in stages 1, 2 and 3 are much less than other plants having power densities as high as 3.0 hp/1000ft³.

Table 5-3 summarizes HiPure simulator results that are pertinent to the 1st Stage HPOAS reactor calibration. The agreement between measured and predicted values of the parameters in Table 5-3 is very close. Given the difficulties in obtaining accurate stage purity and vent gas flow rates due to leakage, this is good closure for the HiPure model calibration.

Table 5-3. H	liPure Steady State C	alibration Results	
ltem	Units	Reported	Predicted
1 st Stage HPOAS Influent			
Flow	mgd	9.4	9.4
COD	mg/L	388	input
cB0D5	mg/L	205	input
TSS	mg/L	76	input
VSS	mg/L	69	input
1 st Stage HPOAS			
MLSS	mg/L	1,435	1,518
MLVSS	mg/L	1,316	1,373
pH	S.U.	6.5	6.3
SRT	days	0.6	input
RAS TSS	mg/L	3,142	3,331
WAS	mgd	0.22	0.2
WAS1	lb VSS/d	11,825	11.813
Oxygen Transfer Components			
02 Flow	SCFM	156	154
HPO Gas Feed Rate	Tons/d	8.4	8.3
Reactor 1 DO	mg/L	13.5	12.1
Reactor 2 DO	mg/L	15.6	10.9
Reactor 3 DO	mg/L	12.9	10.3
Reactor 1 02 Purity	%	65	68
Reactor 2 02 Purity	%	57	59
Reactor 3 02 Purity	%	54	50
Utilization	%	-	74
Effluent			
COD	mg/L	67	54

 $^{\tt 1}$ Includes effluent TSS

All the mixer motors during testing were operating at reduced power draw. The aerators horse powers, if reduced by the ratio of amperage draw to name plate amperage were 48, 29 and 29 compared to 60, 40 and 40 name plate horsepower. Motor amperage was measured at both low and high flow rates to determine if water level might change power draw. There was no significant difference between power draw at low and high flow rates. The types of impellers used at the WRP are called "Pitch Bladed Turbines" or PBT. Lightnin's model number for this type of propeller is A200 and it is the most common type of impeller used in HPOAS plants. It has a nominal Standard Aeration Efficiency (SAE) of 2.8 lbs02/hp-hr and the benefit of being relatively insensitive to liquid level. It is also inexpensive to manufacture. If oxygen transfer becomes an issue at the plant, the propeller submergence can be adjusted to increase power draw or a different, new model impeller with a higher SAE, such as Lightnin's R335, could be used.

5.2.7 2nd Stage HPOAS

Figures 5-37 and 5-38 show the measured and predicted MLSS, MLVSS, and Secondary Clarifier 1-4 effluent TSS concentrations. The predicted MLSS and MLVSS follow the general trend of the reported data but do not match it directly. The 2nd Stage MLSS is very sensitive to the influent organic load

and effluent TSS. Small differences in loadings or effluent TSS can greatly impact the predicted MLSS/MLVSS value. Given the Primary Effluent 1/2 flow routed directly to the 2nd Stage system was estimated for the first 100 days of the 152-day itinerary, the focus of the 2nd stage MLSS calibration was to match the general trend of the data during the last 52 days (starting July 7th) which it does well. The increase in MLSS at the end of the simulation can be attributed to the predicted low effluent TSS concentration which resulted in less solids being wasted from the system.

Figure 5-39 shows the predicted ammonia matches the reported values well using the updated nitrification kinetics except during periods of plant upset in July and late August. Figure 5-40 shows some response in effluent nitrate due to less nitrification/nitrogen loadings but does not match the inhibitory effect observed at the plant. As noted above, the City should continue to work with industry to define whether something is being added to the system which inhibits nitrification and whether low phosphate levels could be limiting nitrification.

Figure 5-41 shows the predicted effluent phosphorus concentrations are greater than reported due to high phosphate concentrations resulting from the Fe:P molar ratio assumption used (and less effective Me dose per BW). Figure 5-42 shows the predicted Secondary Clarifier 1-4 return sludge TSS concentration and flow. The BioWin RAS flow was increased by 15 percent based upon clarifier draw-down testing.

Figure 5-37. BioWin Calibration 2nd Stage HPOAS MLSS and MLVSS.

Figure 5-38. BioWin Calibration Secondary Clarifier 1-4 Effluent TSS.

Figure 5-39 BioWin Calibration Secondary Clarifier 1-4 Effluent Ammonia.

Figure 5-40 BioWin Calibration Secondary Clarifier 1-4 Effluent Nitrate+Nitrite (NOx).

Figure 5-41. BioWin Calibration Secondary Clarifier 1-4 Effluent Phosphorus.

Figure 5-42. BioWin Calibration 2nd Stage HPOAS Clarifier Return Sludge Flow and TSS.

5.2.8 Plant Effluent

The chlorine contact tanks were not modeled in the calibration. Data shows the combined effluent TSS can decrease by 1 to 4 mg/L depending upon the effluent quality from the secondary clarifiers.

5.2.9 Waste Activated Sludge (WAS) Gravity Belt Thickeners

Figures 5-43 and 5-44 show the predicted and measured WAS GBT feed flows and solids after combining all waste sludge in the Sludge Holding Tank match very well. Thickened sludge flow rate and TS (TWAS) matches well using a solids capture of 89 percent and underflow rate of 7 percent of the influent feed rate as shown in Figure 5-45. The influent feed rate includes 70 gpm of belt wash water. Figures 5-46 through 5-49 show the measured and predicted GBT filtrate parameter correlate very well. Figure 5-49 shows there is some phosphate release occurring in the WAS Holding Tank (1 to 2 hour detention time) as phosphate is increasing across the GBT.

Figure 5-43. BioWin Calibration WAS Gravity Belt Thickener Feed Flow.

Figure 5-44. BioWin Calibration WAS Gravity Belt Thickener Feed TSS.

Figure 5-45. BioWin Calibration WAS Gravity Belt Thickener Thickened Sludge Flow and TSS.

Figure 5-46. BioWin Calibration WAS Gravity Belt Thickener Filtrate Solids.

Figure 5-47. BioWin Calibration WAS Gravity Belt Thickener Filtrate COD and cBOD5.

Figure 5-48. BioWin Calibration WAS Gravity Belt Thickener Filtrate Nitrogen.

Figure 5-49. BioWin Calibration WAS Gravity Belt Thickener Filtrate Phosphorus.

5.2.10 Digester Feed

Primary sludge and TWAS is blended together prior to feeding the digesters. Figures 5-50 through 5-52 show predicted digester feed solids and total phosphorus match very well with the reported plant data.

Figure 5-50. BioWin Calibration Digester Feed Solids.

Figure 5-51. BioWin Calibration Digester Feed Mass Loadings.

Figure 5-52. BioWin Calibration Digester Feed Phosphorus.

5.2.11 Digesters

Anaerobic digesters performance is defined by volatile solids (VS) destruction and resulting solids concentrations. BioWin predicted VS destruction and solids matches very well with the plant reported data shown in Figures 5-53 and 5-54.

Figure 5-53. BioWin Calibration Digester Volatile Solids Destruction.

Figure 5-54. BioWin Calibration Digester Solids.

5.2.12 Digested Sludge Holding

During the August 2017 wastewater characterization sampling event, the Digested Sludge Holding (DSH) tank TS and VS matched the digester effluent as shown in Figures 5-54 and 5-55. Plant operating data prior to the August sampling event shows additional VS destruction is occurring in the DSH tank as the TS concentration decreased from roughly 2.1% TS to 1.8% TS. Given the HRT in the DSH tank is typically less than 1 day, the model was calibrated to the August 2017 VS destruction (limited to no VS destruction).

5.2.13 Digested Sludge (DS) GBTs

Figure 5-56 shows the predicted and measured thickened sludge flow rate and TS matches well using a solids capture of 89 percent and underflow rate of 15 percent of the influent feed rate. The influent feed rate includes 85 gpm of belt wash water. Figures 5-57 and 5-58 show the measured and predicted GBT filtrate solids and COD match the measured values very well. Figures 5-59 and 5-60 show the measured and predicted GBT filtrate GBT filtrate TKN and phosphorus are lower than measured values. Predicted filtrate phosphorus concentrations are higher than measured due to the high Fe:P molar ratio used in the calibration.

Figure 5-56. BioWin Calibration Digested Sludge GBT Thickened Sludge Flow and Solids.

Figure 5-57. BioWin Calibration DS Gravity Belt Thickener Filtrate Solids.

Figure 5-58. BioWin Calibration DS Gravity Belt Thickener Filtrate COD and Filtered COD.

Figure 5-59. BioWin Calibration DS Gravity Belt Thickener Filtrate Nitrogen.

Figure 5-60. BioWin Calibration DS Gravity Belt Thickener Filtrate Phosphorus.

Section 6: References

Brown and Caldwell (BC). 2017a. Rochester Water Reclamation Plant Facilities Plan. Technical Memorandum Nitrification Rate Testing, September.

BC. 2017b. Rochester Water Reclamation Plant Facilities Plan. Technical Memorandum Aeration Basin Off Gas Testing, November.

Attachment A: Wastewater Characterization Sampling Plan

Wastewater Characterization Sampling Plan

30 E Seventh Street, Suite 2500 St. Paul, Minnesota 55101 T: 651.298.0710

Prepared for:	City of Rochester Water Reclamation Plant
Project Title:	WRP Facilities Plan
Project No.:	150811
Subject:	Wastewater Characterization Sampling Plan
Date:	August 4, 2017
То:	Matt Baker, P.E. Project Manager
From:	Harold Voth, P.E. Project Manager
Prepared by:	Lloyd Winchell, P.E. Process Engineer
	Don Esping, P.E., Senior Process Engineer
	Dr. Michael Stenstrom, Ph.D, Consulting Engineer

Reviewed by: Jose Jimenez, Ph.D, Senior Process Engineer

This page intentionally left blank.

Table of Contents

List o	f Figuresii	i
List o	f Tablesii	i
Secti	on 1: Introduction 1	-
Secti	on 2: Sampling	,
2.1	General 2	,
2.2	Flow Weighted Composite Samples	,
2.3	Composite Grab Samples	;
2.4	Grab Samples	;
2.5	Diurnal and Aeration Basin Profile Sampling	,
Secti	on 3: Sampling Analysis Methods	,
3.1	Total COD/TKN/TP Sample Preparation	,
3.2	"Filtered" COD/TKN/TP Samples	,
3.3	Flocculated and Filtered COD (ffCOD)	,
3.4	Volatile Fatty Acid (VFA) Sampling	,
3.5	Hach COD10)
Secti	on 4: Data Management)
Secti	on 5: Additional Testing10)

List of Figures

Figure 1-1.	Graphical Representation of BioWin^{\mbox{\scriptsize M}} COD, TKN, and TP fractions in wastewater	1
Figure 2-1.	Rochester WRP Wastewater Sampling Flow Diagram (Tables 2-1 and 2-2 Contain Sample Ke	eys). 5
Figure 2-2.	Aeration Basin Profile Sample Locations.	8

List of Tables

Table 2-1. Rochester WRP Wastewater Characterization Sampling Plan.	6
Table 2-2. Rochester WRP Wastewater Characterization Diurnal and Aeration Basin Profile S	Sampling Plan.

Section 1: Introduction

This document summarizes the wastewater characterization sampling program for the City of Rochester (City) Water Reclamation Plant (WRP) BioWin[™] and HiPure process simulator calibrations. Data from the sampling program will be used, in conjunction with historical plant data, by Brown and Caldwell (BC) to calibrate a whole-plant BioWin[™] simulator and the first stage high purity oxygen activated sludge process (HPOAS1) process model which will then be used for identifying treatment capacity and evaluate alternatives. The sampling program is designed to provide information on the following:

- 1. Influent wastewater chemical oxygen demand (COD), total kjeldahl nitrogen (TKN), and total phosphorus (TP) characteristics. Figure 1 shows a graphical representation of BioWin[™] influent COD, TKN, and TP partitioning. Use of a 1.5 um glass fiber filter for "filtered" COD is acceptable in lieu of a 1.2 um filter.
- 2. Daily diurnal flow and concentration/loading patterns (Flow, COD, TKN, TP).

3. Characterize plant performance and individual unit process performance.

Figure 1-1. Graphical Representation of BioWin[™] COD, TKN, and TP fractions in wastewater.

This document summarizes the sampling, sample analysis methods, data management, and recommended additional sampling.

Section 2: Sampling

The sampling program will be conducted over 12 consecutive days starting August 20 and ending August 31, 2017. The sampling program is designed to supplement the City's current sampling and analysis regime as required for BioWin[™] and HiPure calibrations. Three types of samples are required and described below. Also, two special sampling efforts, diurnal and aeration basin profiles, supplement the sampling program as described below.

2.1 General

The following list summarizes some general requirements for the sampling program. Several others will likely arise as the details for the sampling program are worked through.

- Collect samples at a point representative of the total flow.
- All samples shall be collected and analyzed by City staff.
- Grab samples should be taken at the same time each sampling day and shall be within the same period as automated samplers. **Record sample collection time**.
- Sampling and analysis shall be in accordance with Standard Methods.
- Sampler/samples must be refrigerated or packed in ice for sample preservation during the sampling period and transport to the lab.
- Record the sample collection time.
- All filtered and floc-filtered samples shall be filtered prior to preservation.

Figure 2-1, WRP Process Flow Schematic shows the sampling locations referenced in Table 2-1 below.

2.2 Flow Weighted Composite Samples

Flow weighted composite samples using the existing WRP influent, primary effluent, and effluent samplers will be collected and analyzed for parameters identified in list below. Additional composite samplers may be needed to complete the program. Contact BC for compositing volumes if samplers do not have flow weighting capability.

Table 2-1 lists all the parameters analyzed from the composite sample with the few exceptions noted below.

- WRP Influent all samples except flow, pH, and temperature from WRP instrumentation
- Primary influent all samples except flow and pH from WRP instrumentation.
- Primary Clarifier 1/2 Effluent all samples except flow and pH from WRP instrumentation and sludge blanket depth (SBD) measured by WRP staff.
- Primary Clarifier 3 Effluent all samples except flow and pH from WRP and SBD measured by WRP staff.
- Intermediate Effluent all samples except flow and pH from WRP instrumentation and sludge blanket depths for one clarifier measured by WRP staff
- Final 1-4 Effluent all samples except flow and pH from WRP instrumentation and sludge blanket depths for one clarifier measured by WRP staff
- Final 5 Effluent all samples except flow and pH from WRP instrumentation and sludge blanket depth measured by WRP staff
- Plant Effluent temperature and pH from WRP instrumentation
- WAS Gravity Belt Thickener (GBT) Washwater flow from WRP instrumentation
- Digested GBT Washwater flow from WRP instrumentation

2.3 Composite Grab Samples

Flow streams requiring composite grab samples are listed below and in Table 2-1. Composite grab samples consist of 3 individual grab samples taken over the course of a day, or shift, and evenly spaced over that period (from day to day individual grab samples shall be taken at the same time). Upon collection of the third grab sample, equal volumes of the three grab samples will be combined into one singe composite sample for analysis. Note, that grab sample taken earlier in the period shall be stored per *Standard Methods* before compositing.

- HPO Intermediate RAS all except flow from WRP instrumentation (note WAS flow required as well)
- HPO Final RAS all except flow from WRP instrumentation (note WAS flow required as well)
- ABC RAS all except flow from WRP instrumentation (note WAS flow required as well)
- Primary 1/2 Sludge all except flow from WRP instrumentation
- Primary 3 Sludge all except flow from WRP instrumentation
- WAS GBT Feed all except flow from WRP instrumentation
- WAS GBT Cake all except flow

2.4 Grab Samples

Grab samples are used for liquid stream and solid stream flows and diurnal sampling. City staff will collect the grab samples from the flow streams identified in the list below once per day. For processes in which there is more than 1 process unit or reactor (i.e. HPOAS or ABC basins, digesters, etc.) a grab sample from each reactor/process unit shall be collected and equal volumes of each reactor sample shall be combined to form one sample for analysis.

In Table 2-1, if a process unit/flow stream is out of service, samples will not be collected. For samples where a solids blanket level is required (e.g. primary clarifiers), estimate the solids blanket depth using a sludge judge and reading the solids/liquid interface in one of the clarifiers.

Grab samples are listed below and in Table 2-1.

- 1st Stage Mixed Liquor all except DO and airflow provided from WRP instrumentation
- 2nd Stage Mixed Liquor all except DO and airflow provided from WRP instrumentation
- Basin ³/₄ Mixed Liquor all except DO and airflow provided from WRP instrumentation
- WAS GBT Cake flow
- WAS GBT Filtrate all except flow from WRP instrumentation
- Digester Feed all except flow from WRP instrumentation
- Digester Overflow all except flow from WRP instrumentation
- Digested GBT Feed all except flow from WRP instrumentation
- Digested GBT Cake- all except flow from WRP instrumentation
- Digested GBT Filtrate all

Both WAS and Digested GBT Filtrate samples can include wash water provided the daily wash water flow is measured.

2.5 Diurnal and Aeration Basin Profile Sampling

On days of diurnal/aeration basin profile sampling, the WRP shall process influent flow as it is received during the day and not use the influent equalization basin. Table 2-2 summarizes the diurnal and aeration basin profile sampling. Diurnal samples shall be collected with automated ISCO type samplers provided by the City capable of taking discrete samples. Aeration basin profile and COD/VFA samples shall be grab samples except oxygen flow or airflow shall be recorded by the WRP existing instrumentation.

- Three days diurnal sampling and aeration basin profiling on August 27, 28, and 29th are recommended. These diurnal and tank profile events will be conducted on the same day. The diurnal sampling start time shall match the same start time as the plant influent composite sampler.
- Samples will be taken every hour using a discrete sampler (24 bottle variety). The contents of two hourly sample bottles will be combined to form a single two-hour composite sample (i.e. the 7 and 8 a.m. sample combine to form the 7/8 a.m. sample). Sample volumes combined from each hourly sample will be flow weighted and BC will provide a spreadsheet to calculate composite volumes. Analyze streams for the parameters identified in Table 2-2.
- For estimating COD fractions in the plant influent, an influent grab sample will be collected at 9 am, 12 pm and 3pm on each diurnal sampling day and analyzed for total, filtered, flocculted and filtered COD (ffCOD), volatile fatty acids (VFAs), and volatile acids. For VFA samples, collect a sub-sample and immediately filter solids by using a syringe filter as described in the section below. Fill the 40 ml VFA sample vial, by overfilling the vial to form a reverse meniscus, so when the cap is screwed on, there are no air bubbles (turn sample vial over to observe if air bubble is present). See below for additional instructions. Be sure to note sample time for comparison to composite sampler data.
- Primary effluent VFA grab samples are also collected at the same time as the influent VFA sample to define if VFA generation is occurring across the primary clarifiers.
- During each diurnal sampling day aeration basin profiles shall be completed. Select one train
 each from the ABC, HPOAS 1, and HPOAS 2 systems for profiling and analyze for parameters
 identified in Table 2-2. During each day of diurnal testing, each aeration basin system shall
 have two profiles completed one in the morning and one in the afternoon. Samples shall
 be collected at the locations shown in Figure 2-2. Also, during each profile collect a RAS sample representative of the RAS delivered to the profiled basin.
- For aeration basin nutrient profile samples (NH3-N, NOX-N, NO3-N, NO2-N, PO4-P, filtered COD) separate solids immediately after sampling by settling MLSS sample for 5 minutes, pour supernatant through coffee filter collecting filtrate and then preserve sample for filtering with 0.45 um filter/analysis by lab or filter sample with 0.45 um filter within 5 minutes and send filtered sample to lab for analysis.

Figure 2-1. Rochester WRP Wastewater Sampling Flow Diagram (Tables 2-1 and 2-2 Contain Sample Keys).

													:	12 Day	s of Co	mposit	e and G	irab Sa	mples													
Parameter	WRP Influent	Primary Influent	Primary Clarifier 1/2 Influent	Primary Clarifier 3 Influent	Primary 1/2 Effluent	Primary 3 Effluent	Primary 1/2 Effluent to Stage 2	1st Stage Mixed Liquor	2nd Stage Mixed Liquor	Basin 3/4 Mixed Liquor	Intermediate Effluent	Final 1-4 Effluent	Final 5 Effluent	Plant Effluent	HPO Intermediate RAS	HPO Intermediate WAS	HPO Final RAS	HPO Final WAS	ABC RAS	ABC WAS	Primary 1/2 Sludge	Primary 3 Sludge	WAS GBT Feed	WAS GBT Cake	WAS GBT Filtrate	WAS GBT Washwater	Digester Feed	Digester Overflow	Digested GBT Feed	Digested GBT Filtrate	Digested GBT Washwater	Digested GBT Cake
Sample Key	1	2	32	3	4	5	30	6	7	8	9	10	11	12	13	33	14	34	15	35	16	17	18	19	20	21	22	23	24	25	26	31
Flow	1/d	1/d	1/d	1/d	1/d	1/d	1/d			1/d (IMLR)	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d
Ferric Chloride Flow					1/d																						1/d					
TSS	1/d	1/d			1/d	1/d		1/d	1/d	1/d	1/d	1/d	1/d	1/d	1/d		1/d		1/d						1/d					1/d		
VSS	1/d	1/d			1/d	1/d		1/d	1/d	1/d	1/d	1/d	1/d												1/d					1/d		
TS																					1/d	1/d	1/d	1/d			1/d	1/d	1/d			1/d
VS																					1/d	1/d	1/d	1/d			1/d	1/d	1/d		Ļ	1/d
																														<u> </u>	\mid	·
CB0D5	1/d	1/d			1/d	1/d					1/d	1/d	1/d	1/d											1/d						\mid	I
filtered CB0D5	1/d	1/d			1/d	1/d																								┼───	┝───┤	
COD	1/d	1/d			1/d	1/d		1/d	1/d	1/d															1/d			1/d	1/d	1/d		
Filtered COD	1/d	1/d			1/d	1/d					1/d	1/d	1/d												1/d					1/d		
floc/filtered COD	1/d	1/d									1/d	1/d	1/d																			
TKN	1/d	1/d			1/d	1/d		1/d	1/d	1/d	1/d	1/d	1/d	1/d											1/d					1/d		1
Filtered TKN	1/d	1/d																														
NH3-N	1/d	1/d			1/d	1/d					1/d	1/d	1/d	1/d											1/d					1/d		
NOX-N, NO3-N	1/d	1/d										1/d	1/d	1/d																		
ТР	1/d	1/d			1/d	1/d		1/d	1/d	1/d	1/d	1/d	1/d	1/d											1/d		1/d	1/d	1/d	1/d		
Filtered TP	1/d	1/d			±/ G	±/ u		±/ u	±/ u	±/ u	±/ u	±/ u	±/ u	±/ u											±/ u		±/ u	±/ u	±/ u	1/ U	┥───┤	l
P04-P	1/d	1/d			1/d	1/d				1/d	1/d	1/d	1/d												1/d		1/d			1/d		J
	±/ ¤	±/ «			±/ 0	±/ ¤				±/ G	<u> </u>	±/ ¤	±/ G												±/ 4		±/ G			/ ~	++	
Temperature	1/d													1/d														1/d				
рН	1/d	1/d			1/d	1/d		1/d	1/d	1/d	1/d	1/d	1/d	1/d														1/d				
Alkalinity	1/d	1/d			1/d	1/d					1/d	1/d	1/d															1/d				
Soluble Mg, Ca	1/d																											1/d (Mg	g Only)			
DO								1/d	1/d	1/d																						
Airflow								1/d	1/d	1/d																						
Digester Methane																												1/d				
Sludge Blanket Depth											1/d	1/d	1/d								1/d	1/d										

Table 2-1. Rochester WRP Wastewater Characterization Sampling Plan.

1/d = parameter existing instrument recorded data or currently sampled and analyzed - daily average value

= flow weighted composite

= composite grab sample (three grabs composited to form single sample)

= grab sample

IMLR = internal mixed liquor return

	Diurn	al (3 Da	ys) and /	Aeration	Basin Pi	rofile (3	events)	Grab Sai	nples
Parameter	WRP Influent	Primary 1/2 Effluent	Primary 3 Effluent	Intermediate Effluent	Final 1-4 Effluent	Final 5 Effluent	HPO 1st Stage Profile	HPO 2nd Stage Profile	ABC Profile
Sample Key	1	4	5	9	10	11	27а-с	28a-c	29а-е
Flow	12/event	12/event	12/event	12/event	12/event	12/event	2/event	2/event	2/event
TSS	12/event	12/event	12/event	12/event	12/event	12/event	6/event	6/event	10/event
VSS	12/event	12/event	12/event	12/event	12/event	12/event			
COD	12/event	12/event	12/event	12/event	12/event	12/event			
COD	3/event								
Filtered COD	3/event						6/event	6/event	10/event
floc/filtered COD	3/event								
Volatile fatty acids	3/event	3/event	3/event						
Volatile acids	3/event	3/event	3/event						
TKN	12/event	12/event	12/event						
NH3-N				12/event	12/event	12/event	6/event	6/event	10/event
NOX-N, NO3-N				12/event	12/event	12/event	6/event	6/event	10/event
NO2-N							6/event	6/event	10/event
TP	12/event	12/event	12/event						
P04-P				12/event	12/event	12/event	6/event	6/event	10/event
DO							6/event	6/event	10/event
Airflow							6/event	6/event	10/event

 Table 2-2.
 Rochester WRP Wastewater Characterization Diurnal and Aeration Basin Profile Sampling Plan.

Sample location

Figure 2-2. Aeration Basin Profile Sample Locations.

Section 3: Sampling Analysis Methods

This section summarizes key analytical methods and requirements of the sampling program.

3.1 Total COD/TKN/TP Sample Preparation

COD (total), TKN (total) and TP (total) samples should be thoroughly homogenized (blended) prior to analysis. This applies to samples of (a) raw influent, (b) mixed liquor, and (c) effluent. It is recommended the City run three or four comparison split samples of plant influent COD with and without blending these samples prior to starting the sampling program to define any differences in analytical results.

3.2 "Filtered" COD/TKN/TP Samples

Several samples will be analyzed for "filtered" COD, TKN, and TP. For collection of these samples, the filtrate from 1.5μ m glass fiber TSS filtration is collected in a test tube during the sample filtration process. Triple rinse glass fiber filters with de-ionized water and thoroughly dry filters prior to filter samples when collecting soluble filtrate sample. Do not include rinse water in sample volume. Care must be exercised not to dilute the sample (filtrate) volume with filter rinse water.

3.3 Flocculated and Filtered COD (ffCOD)

Influent readily biodegradable COD concentration (RBCOD) will be measured using the ffCOD (flocculated and filtered COD) method of Mamais *et al.* (1993). The method is based on a physical separation, which involves pre-flocculation of the sample followed by filtration (referred to as the flocCODsol test or "ffCOD"). It is assumed that the flocculation step removes the colloidal material, resulting in a filtrate that contains only "truly soluble" material. The procedure is outlined briefly below:

- 1. 1 mL of 100 g/L zinc sulfate solution is added to 100 mL of wastewater;
- 2. the sample is then mixed vigorously for approximately 1 minute;
- 3. the sample pH is adjusted to approximately 10.5 using 6 M sodium hydroxide solution;
- 4. the sample is then allowed to settle, and a sample of the supernatant is withdrawn;
- 5. the supernatant sample is filtered using a 0.45 µm membrane filter, and the filtrate COD is analyzed.

Mamais, D., D. Jenkins and P. Pitt (1993) A Rapid Physical-chemical Method for the Determination of Readily Biodegradable Soluble COD in Municipal Wastewater. *Water Res.*, 27(1):195-197.

3.4 Volatile Fatty Acid (VFA) Sampling

The following sampling procedures should be used for VFA sample collection. Sample collection time shall be at same time for every sample.

- 1. VFA sample procedure:
 - a. Collect sample- do not stir or agitate the sample further.
 - b. Prepare the VFA sample in the field using a syringe filter as follows:
 - (1) Take the required volume (usually 50 ml) in a syringe;
 - (2) Attach a syringe filter. Whatman GD/X filters are suitable. They have a coarse layer, followed by a finer layer, ending with a membrane to 0.20 μ m. 25mm filters are recommended to allow membrane filtration of raw wastewater;
 - (3) Fill a 40 ml VOA vial containing the recommended HCl acid preservative. Tubing could be used out of the syringe filter to avoid splashing into the vial;

- (4) There should be no headspace in the filled vial to avoid contamination and oxygen intrusion: (VOA vials are tall cylindrical sample vials with a Teflon septum and special cap typically used for volatile organics sampling. The vial is filled so that the meniscus is above the top of the vial. The septum is slid over the top, displacing some of the meniscus, so the vial has no headspace or bubbles. The cap has a hole in the middle so that a portion of the sample can be obtained through the exposed septum with a syringe for injection into the GC in the laboratory. The vials are usually purchased with acid preservative).
- (5) Store the samples in a refrigerator at 4° C then deliver to the laboratory as soon as possible with a cold pack/ice to maintain the low temperature. Using the syringe filter, volatilization should have been minimized, the sample should be bacteria-free, and further reactions or loss of VFAs should be minimized. Inform the lab that samples have already been filtered to 0.20 µm. Further filtration in the lab is not required this will minimize a possible volatilization and loss of VFAs in the lab.
- 2. The lab doing the VFA analyses should be equipped for detection limits down to reporting limits of 5 mg/l and method detection limits down to 1 mg/l. Typically this will be achieved with gas chromatography with flame ionization detection (GC/FID). Typically, the method involves direct aqueous injection onto a specialized capillary column to separate the low molecular weight fatty acids with a selective stationary phase designed for acidic compounds. The following labs are available to conduct VFA analysis.
 - a. EMA, EnviroMatrix Analytical, Inc. 4340 Viewridge Ave., San Diego, CA 92123: 858-560-7717
 - b. Minnesota Valley, 1126 North Front Street, New Ulm, MN 56073: 800-782-3557
 - c. Specialty Analytical, 11711 SE Capps Rd., Clackamas, OR 97015: 503-607-1331
 - d. LWH Laboratories, Royal Oaks Drive #100, Monrovia, CA 91016: 800-566-LABS

3.5 Hach COD

Presumably COD analyses will be conducted using the Hach Test-in-tube spectrophotometric method. High range tubes (0 - 1,500 mg/L) will be appropriate for the raw influent and primary effluent samples. In the case of mixed liquor CODs, it may be necessary to dilute samples. For example, if the MLVSS concentration is say 2,000 mg/L, the expected COD will be approximately 1.5X MLVSS or 3,000 mgCOD/L. In that case it would be necessary to dilute samples 3:1 (i.e. two parts water, one part sample).

Section 4: Data Management

Laboratory results shall be input into an excel spreadsheet provided by Brown and Caldwell. As soon as data is available, please e-mail results to Don Esping and Lloyd Winchell.

Section 5: Additional Testing

Readily biodegradable COD (RBCOD) and volatile fatty acids (VFA) levels in municipal wastewater can have a significant impact on biological nutrient removal performance. In general, the higher the RBCOD/VFA levels, the BNR performance improves. RBCOD /VFA levels normally vary based upon two primary factors: temperature and collection system detention time. Typically, warmer temperatures promote hydrolysis and fermentation of wastewater components in collection systems. RBCOD/VFAs are commonly higher in summer/fall and lower in winter/spring. Similarly, RBCOD/VFAs typically decrease during peak flow events when wastewater detention times in the collection system are minimized. Therefore, it is recommended to repeat the plant influent COD/TKN/TP wastewater characterization during winter when RBCOD/VFA generation is lowest.

Attachment B: Wastewater Characterization Data

Application Interview	Adju																						
Province	-	istment Factor		1.15					1.15										1.35	1.58	Assumes #	ng: ddt ional VSS	
											N	R Influe	nt - Adju	sted						-	= Additio	ial COD/1.58 ig VSS	
1 1		Date	Flow	COD	COD (WRP)	Filtered COD	ffcoD	Filtered Mg	CBOD5	Filtered CBOD5	TKN	Filtere d TKN	NH3	Nitrate/Nox	Total P	Filtered P	P04-P	Total Ak	TSS	VSS	픱	Temp	Filtered Ca
1 1	Day		pgm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L as N	mg/L as N	mg/L as N	as N, mg/L	mg/L as P	mg/L as P	mg/L as P	mg/L as CaCO	mg/L	mg/L		Ľ	mg/L
2 2 2 2 3	-	8/20/2017	13.3	921	1090	430	295	28	492	229	88	28.2	17.1	0.24	7.4	4.0	4.0	389	319	297	6.76	19.4	91
3 1	2	8/21/2017	14.6	884	940	389	261	27	438	208	39	28.2	18.5	0.42	7.4	4.3	4.4	389	335	302	6.86	19.1	87
	e	8/22/2017	14.8	794	670	368	269	25	426	203	39	28.7	20.7	< 0.05	7.1	4.2	4.1	410	325	279	69.9	18.6	91
0 0	4	8/23/2017	14.3	752	940	312	203	27	401	133	40	30.6	22.2	0.07	8.2	4.86	4.8	421	286	253	7.23	18.9	89
0 0	5	8/24/2017	14.4	718	800	297	190	27	399	131	42	30.6	19.1	0.05	8.2	4.4	4.9	431	356	298	7.19	18.4	91
7 8 8 9	9	8/25/2017	14.0	715	820	348	225	27	376	156	41	30.3	21.3	0.06	7.4	4.6	4.4	415	277	240	7.13	18.4	93
	7	8/26/2017	13.4	622	710	293	195	27	351	144	39	30.6	20.5	0.09	6.6	3.9	3.6	414	257	227	6.75	18.7	95
9 6826017 141 563 591 701 214 605 714 613 713 613 713 613 713 613 713 613 713 613 713 613 713 613 713 613 714 713 714 713 714 713 714 713 714 714 713 714 714 713 714 714 713 714 714 713 714 714 713 714 714 713 714 714 713 714 714 713 714 714 713 714 714 713 714 713 714 713 713 713 714 </td <td>8</td> <td>8/27/2017</td> <td>13.2</td> <td>545</td> <td>730</td> <td>257</td> <td>148</td> <td>32</td> <td>304</td> <td>112</td> <td>36</td> <td>29.1</td> <td>21.6</td> <td>0.06</td> <td>6.2</td> <td>3.7</td> <td>3.7</td> <td>415</td> <td>211</td> <td>187</td> <td>6.9</td> <td>18.2</td> <td>82</td>	8	8/27/2017	13.2	545	730	257	148	32	304	112	36	29.1	21.6	0.06	6.2	3.7	3.7	415	211	187	6.9	18.2	82
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	8/28/2017	14.2	588	770	274	167	27	350	101	40	30.5	21.4	< 0.05	6.8	3.9	3.4	424	252	218	7.13	18.7	92
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	8/29/2017	14.8	725	850	321	203	28	366	122	38	31.8	21.8	0.05	6.9	4.3	4.2	423	215	195	7.15	19.3	93
	11	8/30/2017	14.7	958	980	306	195	26	484	126	53	31.2	22.1	< 0.05	9.4	4.4	4.4	423	478	397	7.48	19.0	88
Memolio 14.2 7.45 691 324 123 324 124 734 130 131 130 131 130 131 130 131 130 131 1	12	8/31/2017	14.7	725	850	295	197	27	344	108	41	29.3	21.2	0.05	7.9	4.1	4.7	418	392	319	7.14	19.3	6
Minimum 114 758 869 306 27 364 713 0.06 77 413 365 73 361 713 161 52 32 321 <td></td> <td>Average</td> <td>14.2</td> <td>745</td> <td>871</td> <td>324</td> <td>212</td> <td>27</td> <td>394</td> <td>148</td> <td>40.4</td> <td>29.9</td> <td>20.6</td> <td>0.12</td> <td>7.5</td> <td>42</td> <td>4.2</td> <td>414</td> <td>308</td> <td>268</td> <td>7.03</td> <td>18.8</td> <td>6</td>		Average	14.2	745	871	324	212	27	394	148	40.4	29.9	20.6	0.12	7.5	42	4.2	414	308	268	7.03	18.8	6
		Minimum	14.4	725	850	309	200	27 26	388	132	39.7 26.4	30.4	21.3	0.06	7.4	42	4.3	417 200	302	266	7.13	18.8	91
Count 12		Maximum	14.8	958	1090	430	295	32	492	229	52.8	31.8	22.2	0.4	9.4	4.9	4.9	431	478	397	7.48	19.4	95
Automaticat A		Count	12	5	12	5	12	12	12	12	12	12	5	6	12	12	5	12	12	5	12	12	12
By Date CONFRAIL SOLIDS CHARACTERZATION CONFRAIL CONTRAIL CONFRAIL CONTRAIL CONFRAIL CONTRAIL CONTTAIL CONTTAIL CONTTAIL	40			= Data Scr	reened from d	dataset			Adjusted in	filuent data													
Date COD:TKN Trik COD:WRP: Fpod Fpod COD:TX Trik Trik COD:TX Trik COD:TX Trik COD:TX Trik COD:TX Trik COD:TX Trik Trik <tht< td=""><td>5</td><td></td><td></td><td></td><td>JENERAL</td><td></td><td></td><td></td><td></td><td>SOLID</td><td>S CHARACT</td><td>ERZATION</td><td></td><td></td><td></td><td></td><td></td><td>COD FR4</td><td>ACTIONS</td><td></td><td></td><td></td><td></td></tht<>	5				JENERAL					SOLID	S CHARACT	ERZATION						COD FR4	ACTIONS				
Date COD:TKN TET.NL COOMRP: TEUD FEAN FUND FEAN COUNC FEAN FUND FEAN COD:TKN TET.NL COOMRP: FEAN FUND FEAN COD:TKN TET.NL COOMRP: FEAN FUND FEAN COD:TKN TET.NL COOMRP: FEAN FUND FEAN										Fcvxi/s			:									1	
1 B2/202017 2.24 0.19 1.18 1.25 1.54 0.033 2.27 1.65 0.034 0.037 0.037 0.037 0.037 0.036<	Day	Date	COD:TKN	TP:TKN	COD(WKP):	COD: TP	TSS	VSS:TSS	SSI	s s	pN:VSS	pP:VSS	PN/pCOD	pP:pCOD	NH3:TKN	5 5	D	RBCOD	colCOD	Fbs	Fus	PO4-P:TI	s s s
2 822/2017 2:30 0.10;4 1:06 113 1:31 0:31 0:36 0:35 1:64 0:001 0:23 0:34 2:29 0:36 0:35 0:36	-	8/20/2017	24.4	0.195	1.18	125	1.54	0.93	22	1.65	0.032	0.011	0.019	0.007	0.45	1.9	0.47	275	135	0.30	0.022	0.54	2.9
4 8224011 1.60 0.000 1.74 0.000 0.011 0.011 0.012 0.001 0.056 1.9 0.701 1.77 1.09 0.26	0 0	8/21/2017	23.0	0.194	1.06	119	1.31	0:00	33	1.64	0.034	0.011	0.021	0.006	0.48	2.0	0.44	248	128	0.28	0.015	0.59	2.6
5 B2242017 172 0.16 111 88 12 0.84 58 141 0.037 0.013 0.026 0.06 16 162 107 0.23 0.036 0.64 13 0.69 0.69 0.69 20 6 8225017 161 0.163 1.43 0.87 73 0.87 0.73 0.89 24 24 24 24 24 24 24 24 25 25 24 24 25 26 265 24 24 24 24 24 25 24 24 25 26 255 24 24 25 24 24 25 24 24 25 26 255 24 26 25 26 25 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 <td>0 4</td> <td>8/23/2017</td> <td>18.6</td> <td>0.202</td> <td>1.25</td> <td>92</td> <td>1.40</td> <td>0.88</td> <td>33</td> <td>1.74</td> <td>0.039</td> <td>0.013</td> <td>0.022</td> <td>0.008</td> <td>0.55</td> <td>19</td> <td>0.41</td> <td>177</td> <td>109</td> <td>0.24</td> <td>0.035</td> <td>0.58</td> <td>2.6</td>	0 4	8/23/2017	18.6	0.202	1.25	92	1.40	0.88	33	1.74	0.039	0.013	0.022	0.008	0.55	19	0.41	177	109	0.24	0.035	0.58	2.6
6 8252017 116 016 138 087 29 153 0034 0035 015<	5	8/24/2017	17.2	0.196	1.11	88	1.12	0.84	58	1.41	0.037	0.013	0.026	0.009	0.46	1.8	0.41	162	107	0.23	0.039	09.0	2.0
7 82/25/017 161 0.138 1.34 0.39 1.45 0.007 0.017 0.013 0.037 0.031 0.035 0.031 0.035 0.031 0.041 1/17 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031	9	8/25/2017	17.6	0.183	1.15	96	1.36	0.87	37	1.53	0.043	0.012	0.028	0.008	0.52	1.9	0.49	201	123	0.28	0.034	0.59	2.6
9 62282017 146 0.166 151 67 143 0.067 0.015 0.007 0.057 0.036 0.037 0.037 0.037 0.037 0.036 0.037 0.037 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 <td>۲ ۲</td> <td>8/26/2017</td> <td>15.0</td> <td>0.169</td> <td>1.14</td> <td>26</td> <td>1.37</td> <td>0.89</td> <td>29</td> <td>1.45</td> <td>0.037</td> <td>0.012</td> <td>0.026</td> <td>0.008</td> <td>0.53</td> <td>6. C</td> <td>0.47</td> <td>173</td> <td>98 100</td> <td>0.28</td> <td>0.035</td> <td>0.54</td> <td>2.4 2.6</td>	۲ ۲	8/26/2017	15.0	0.169	1.14	2 6	1.37	0.89	29	1.45	0.037	0.012	0.026	0.008	0.53	6. C	0.47	173	98 100	0.28	0.035	0.54	2.4 2.6
10 83222017 181 0.131 117 104 170 0.81 0.014 <td>00</td> <td>8/28/2017</td> <td>14.6</td> <td>0.168</td> <td>1.31</td> <td>87</td> <td>1.38</td> <td>0.86</td> <td>35</td> <td>1.44</td> <td>0.045</td> <td>0.013</td> <td>0.031</td> <td>0.009</td> <td>0.53</td> <td>1.7</td> <td>0.47</td> <td>141</td> <td>107</td> <td>0.24</td> <td>0.044</td> <td>0.50</td> <td>2.3</td>	00	8/28/2017	14.6	0.168	1.31	87	1.38	0.86	35	1.44	0.045	0.013	0.031	0.009	0.53	1.7	0.47	141	107	0.24	0.044	0.50	2.3
1 BallZority 178 0.106 1.12 1.01 0.013 0.003 0.025 0.014 0.024 0.057 0.24 0.057 0.24 0.057 0.24 0.057 0.24 0.057 0.24 0.057 0.24 0.057 0.24 0.057 0.24 0.057 0.24 0.057 0.24 0.057 0.23 0.011 0.024 0.057 0.037 0.057 0.26 0.037 0.057 0.24 0.057 0.26 0.037 0.66 2.43 Avenge 18.0 0.183 1.18 100 1.28 0.037 0.037 0.037 0.66 2.43 0.37 0.65 2.43 0.35 2.44 0.37 0.65 2.45 0.36 2.44 0.37 0.65 2.45 0.36 2.45 2.45 2.45 0.35 2.45 2.45 0.35 2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.45	10	8/29/2017	18.9	0.181	1.17	104	1.70	0.91	20	2.07	0.034	0.014	0.016	0.007	0.57	2.0	0.44	171	118	0.24	0.044	09.0	3.4
Average 18.5 0.185 1.18 100 1.32 0.87 41 1.58 0.037 0.025 0.008 0.51 1.89 0.44 187 112 0.25 0.037 0.56 2.48 Median 18.6 0.182 1.17 95 1.36 0.38 3.012 0.005 0.63 1.87 0.44 187 112 0.25 0.037 0.56 2.48 Minimum 14.6 0.182 0.117 95 1.36 0.88 34 1.54 0.037 0.56 2.51 0.58 1.72 109 0.25 0.037 0.53 1.87 0.45 1.72 0.99 0.24 0.51 0.56 2.51 0.58 2.51 0.59 0.517 0.56 2.51 0.56 2.51 0.59 0.517 0.56 2.51 0.55 2.51 0.55 0.517 0.56 2.51 0.55 2.51 0.55 2.51 0.55 2.51 0.55	12	8/31/2017	18.1	0.196	1.17	701	0.88	0.81	81 73	1.35	0.035	0.012	0.026	0.009	0.52	2.1	0.41	10/	86	0.24	0.057	0.59	2.0
Median 18.0 0.182 1.17 95 1.36 0.88 34 1.54 0.037 0.012 0.026 0.068 0.53 1.87 0.45 172 109 0.24 0.037 0.59 2.51 Minimum 14.6 0.168 1.02 87 0.88 34 1.54 0.037 0.016 0.006 0.42 1.66 0.24 0.037 0.59 2.51 Minimum 14.6 0.168 1.02 81 20 1.35 0.005 0.60 0.42 1.66 0.17 0.015 0.46 1.8 Maximum 2.44 0.202 1.010 0.016 0.016 0.42 1.66 0.32 1.66 0.46 1.8 0.45 0.46 0.46 3.38 Maximum 2.44 0.202 1.70 0.016 0.014 0.03 0.60 2.11 0.49 2.77 0.46 3.38 A 0.202 1.10 0.14 <		Average	18.5	0.185	1.18	100	1.32	0.87	41	1.58	0.039	0.012	0.025	0.008	0.51	1.89	0.44	187	112	0.25	0.037	0.56	2.48
Mulninum 146 0.168 1.12 87 0.88 0.81 20 1.35 0.002 0.016 0.016 0.006 0.42 1.68 0.32 120 98.0 0.17 0.015 0.44 1.85 Maximum 2.4.4 0.202 1.34 125 1.70 0.93 81 2.07 0.054 0.014 0.033 0.009 0.60 2.11 0.49 2.75 1.350 0.007 0.60 3.38 Control 2.11 0.49 2.75 1.350 0.007 0.60 3.38 Control 2.11 0.49 2.75 1.50 0.50 0.57 0.50 3.38 Control 2.34 0.50 1.30 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0		Median	18.0	0.182	1.17	95	1.36	0.88	8	1.54	0.037	0.012	0.025	0.008	0.53	1.87	0.45	172	109	0.24	0.037	0.59	2.51
Maxmum 244 U202 1.24 1.20 1.70 U33 51 2.07 UU34 U33 U309 U30 U30 U03 U39 U50 2.11 U49 2.19 U39 U30 U307 U30 U35 0 338 0 005 0000 0000 005 000 005 0 005 0 005 0 005 0 005 0 005 0 00		Minimum	14.6	0.168	1.02	87	0.88	0.81	8	1.35	0.032	0.010	0.016	0.006	0.42	1.68	0.32	120	98.0	0.17	0.015	0.46	1.85
	_	Maximum	24.4	0.202	45. F	125	5.5	0.93	÷ ۳	2.07	0.054	0.014	0.033	0.009	0.60	2:11	0.49	275	135.0	0.30	0.05/	0.60	3.38

																								COD-TSS	2.6	2.5	2.4	2.4	2.4	2.5	0.1	2.0	2.5	2.5	2.30	2.39	2.60	12
	itional VSS	COD/1.58 VSS		Notes																				Fpo4	0.57	0.57	0.54 0.66	0.61	0.54	0.56	0.69	0.58	0.63	0.67	09.0	0.60	4C-0	10
	Don Esping	= Additional mg COD/mg	표		6.82	6.87	6.74	7.05	7.11	7.06	6.87	7.01	7.1	7.15	7.12	7.13	7.00	7.06 6.74	7.15	12.00				ц Ц	0.023	0.015	0.040	0.043	0.033	0.035	0.043	0.049	0.046	0.067	0.040	0.041	0.067	
	1.58		SSV	mg/L	305	301	269	326	232	262	225	263	234	269	208	214	259	263 208	326	12				Fhe	0.26	0.24	0.28	0.22	0.25	0.23	0.20	0.27	0.26	0.23	0.24	0.24	0.78	; ;
	1.35		TSS	mg/L	335	335	313	392	271	305	246	311	275	319	246	243	299	308	392	12		TIONS		COLCOL	124	122	72	103	113	96	102	81	85	103	66	100	124.0	ţ
			Total Alk	g/L as CaCO	418	418	430	460	450	455	435	425	454	433	433	448	438	434	460	12		COD FRAC		RECOD	224	207	210	143	179	145	122	173	156	143	164	159	224	1 \$
			P04-P	mg/LasP n	4.5	4.8	4.1	5.3	4.7	5.1	4.1	4.5	5.0	4.7	4.9	5.4	4.8	4.7	5.4	12					0.42	0.40	0.42	0.43	0.43	0.42	0.41	0.44	0.44	0.44	0.42	0.42	0.40	
			Filtered P	mg/L as P	4.2	5.5	4.5	4.76	4.4	5.0	4.3	3.6	3.8	4.1	4.4	4.5	4'4	4.4 3.6	5.5	12				200-8005	2.1	2.1	1.9	1.9	1.9	2.1	1.8	1.7	1.9	2.0	1.96	1.95	2.11	;;;
			T otal P	mg/L as P	8.0	8.4	7.7	8.2	7.7	9.4	7.3	7.1	7.2	8.0	7.8	8.0	5.9	7.9	9.4	12				Fna NH3·TKN	0.57	0.58	0.59	0.59	0.59	0.57	0.00 0.66	0.60	0.61	0.64	0.61	0.59	16.0	};;
		sted	Nitrate/No x	as N, mg/L	1.33	1.50	0.78	1.27	1.63	1.46	1.86	1.85	1.41	1.36	1.11	1.38	1.41	1.40	1.9	12				FupP	0.008	0.006	0.007	0.009	0.011	0.008	0.010	0.011	0.010	0.010	0.009	0.009	0.011	
		it - Adjus	NH3	mg/L as N	26.7	27.9	28.6	32.7	28.9	30.2	28.7	30.6	32.3	28.3	27.8	28.6	29.3	28.7	32.7	12				FupN	0.024	0.024	0.032	0.027	0.027	0.035	0.024	0.029	0.026	0.017	0.026	0.026	0.035	
		ry Influen	Filtered TKN	mg/L as N	35.3	36.2	34.3	40.4	39.0	40.4	37.6	37.5	40.3	37.0	36.6	39.1	37.8	34.3	40.4	12		ZATION		SSV-du	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.02	0.014	0.014	0.003	
		Prima	TKN	mg/L as N	47.2	48.2	48.3	50.2	48.9	51.4	50.2	46.3	48.7	47.5	45.4	44.8	48.1	48.3 44.8	51.4	12	uent data	CHARACTER		SSV:Na	0.039	0.040	0.052	0.043	0.042	0.056	0.036	0.039	0.042	0.027	0.040	0.039	0.056	
			Filtered CBOD5	mg/L	190	172	166	110	110	150	131	88	94.4	103	112	106	128	111	190	12	Adjusted infl	SOLDS	F cv xi/s	pcoD:VS	1.64	1.67	1.63	1.60	1.58	1.60	1 53	1.35	1.63	1.59	1.52	1.59	1.67	
	1.15		CBOD5	mg/L	415	400	391	340	331	376	302	274	331	371	317	304	346	336 274	415	12				SS	30	동	44 85	40	44	21	47	50	38	29	40	41	65	3 5
			ffcoD	mg/L	244	220	240	188	171	203	167	131	148	205	184	169	189	136	244	12				VSS-TSS	0.91	06.0	0.86	0.85	0.86	0.91	0.85	0.84	0.84	0.88	0.87	0.86	0.0	
×			Filtered COD	mg/L	368	342	312	276	274	316	263	229	250	286	269	272	288	275	368	12	ataset			BOD5-TSS	1.24	1.20	1.25	122	1.23	1.23	1 20	1.17	1.29	1.25	1.17	1.23	1 29	2
or roughly 1.	1.15		COD	mg/L	869	845	750	668	644	730	622	558	607	649	607	612	680	646 558	869	12	ened from d	RAL		COD-TP	109	101	86 2	2 28	78	86	84	81	78	76	86	83	0	2
increase/1.6			Flow to ABC	mgd	5.6	4.9	4.7	5.0	5.0	5.0	5.1	5.3	3.8	2.7	4.0	6.2	4.8	5.0	6.2	12	= Data Scre	GENE		TP-TKN	0.169	0.174	0.159	0.157	0.183	0.145	0.149	0.169	0.172	0.179	0.164	0.166	0.183	2
ases by COD			Flow to HPO	mgd	8.3	10.5	11.1	10.5	10.0	10.0	9.1	9.5	11.3	12.9	11.5	8.4	10.3	10.2 8.3	12.9	12				COD-TKN	18.4	17.5	15.5	13.2	14.2	12.4	12.5	13.7	13.4	13.7	14.1	13.5	18.4	5
sume VSS incre	ustment Factor		Date		8/20/2017	8/21/2017	8/22/2017	8/23/2017	8/24/2017	8/25/2017	8/26/2017	8/27/2017	8/28/2017	8/29/2017	8/30/2017	8/31/2017	Average	Minimum	Maximum	Count	U CULLATIONS		<u> </u>	Date	8/20/2017	8/21/2017	8/22/2017	8/24/2017	8/25/2017	8/26/2017	8/28/2017	8/29/2017	8/30/2017	8/31/2017	Average	Median	Maximum	
As a		Ĩ 		Day	+	2	3	4	5	9	7	8	6	10	11	12					ć	5		Dav	f -	2	с т	- 9	9	7	ο σ	10	11	12		-		+

	Adjustment Facto			12			12						11				12	12	Don Esping	ac TCC	
										Primary	1/2 Efflu	lent-Adju	usted				!		due to Fe so	ds added	
	Date	Reported	Pri. Effluent to HPOAS	000	Filtered	1000	20042	Filtered	H H	Ellocod TVN		(Grab)	Total			Total All	00 H	23/1	1	503	Mater
Day	Date	mgd	atage 2	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L as N	mg/L as N	mg/L as N	as N, mg/L	mg/L as P	mg/L as P	mg/L as P	mg/L as CaCO	3 mg/L	was mg/L	5	gpd	NOIAS
-	8/20/2017	8.3	0.8	487	276		244	147	39		26.5		4.0		1.76	389	89	85	6.54	685	
2	8/21/2017	10.5	0.8	462	276		236	145	40.2		28		4.6		2.06	399	88	79	6.5	674	
e	8/22/2017	11.1	0.8	478	293		264	153	39.9		29		4.8		2.07	420	88	83	6.52	603	
4	8/23/2017	10.5	0.8	388	220		193	92	46.1		34.1		4.6		2.59	431	83	73	6.71	614	
2	8/24/2017	10.0	0.8	365	216		193	91.9	43.2		30.7		4.3		2.06	431	67	54	6.7	600	
9	8/25/2017	10.0	0.9	388	227		186	103	44.6		32.2		4.6		2.28	425	78	76	6.8	606	
7	8/26/2017	9.1	0.8	379	229		205	111	41.2		30.8		3.7		1.63	414	82	77	6.7	608	
8	8/27/2017	9.5	0.8	323	188		157	69	41.5		31.3		3.1		1.65	425	99	61	6.77	611	
6	8/28/2017	11.3	0.8	356	210		210	80	44.5		33.3		4.2		2.58	434	67	61	6.88	600	
10	8/29/2017	12.9	0.8	359	218		216	94	40.7		30.1		4.7		2.42	423	82	74	6.8	909	
1	8/30/2017	11.5	0.9	331	205		204	125	42		31.4		4.0		2.33	413	73	61	6.7	738	
12	8/31/2017	8.4	0.8	313	188		152	78	39.1		24.5		3.3		1.80	418	54	46	6.64	680	
	Average	10.3	0.8	386	229	i0//I0#	205	107	42	10//NIC#	30	:0//IC#	4.2	i0/NIC#	2.1	419	76	69	7	635	
	Minimum	10.2	0.8	372	219	WDN#	205	66	41	WOW#	3	WNN#	4.2	WNN#	2.1	422	8 3	74		610	
	Maximum	12.9	6.0	487	293		264	153	46		8 8		4.8		2.6	434	5 8	8		738	
	Count	12	12	12	12	0	12	12	12	0	12	0	12	0	12	12	12	12	12	12	
			= Data Screen	ed from da	ntaset			Adjusted di	tta												
	CALCULATION.	s	L L L														010				
		ſ	GENE	INAL													- CINS				
							1	pcoD:VS				FupP	Fna				colCOD	Est Coll		Alkalinity,	Fpo4
1 Day	B/20/2017	COD: TKN 12.5	0 102	COD: TP	9 74	VSS:TSS 0.96	4 ISS	2 4B	0.46	pP:VSS 0.047	185: IP	pP::pd	0.68	COD:BOD	SCOD:COD	RBCOD	removed 92	3.00	Fus	7 78	P04-P:1
2	8/21/2017	11.5	0.115	100	2.70	0.90	8	2.35	0.51	0.058	16		0.70	2.0	09.0		66	56		7.98	0.45
ლ ₹	8/22/2017	12.0	0.120	100	3.01	0.95	5 2	2.23	0.48	0.058	17		0.73	1.8	0.61		19	53		8.40	0.43
1 10	8/24/2017	8.4	0.099	85	2.88	0.80	13	2.76	0.80	0.079	21		0.71	1.9	0.59		58	36 45		9.02 8.62	0.48
9	8/25/2017	8.7	0.103	84	2.38	0.97	2	2.12	0.59	0.061	16		0.72	2.1	0.59		89	24		8.50	0.49
7	8/26/2017	9.2	0.089	103	2.51	0.94	5	1.96	0.54	0.048	17		0.75	1.8	09.0		34	62		8.28	0.44
∞ c	8/27/2017	7.8	0.074	105	2.38	0.93	5	2.20	0.68	0.050	18		0.75	2.1	0.58		41	57		8.50	0.54
¢	R/29/2017	8.8	0.116	76	2.65	0.91	7	1 89	0.55	0.064	18		74	17	0.00		68	13		8.46	0.51
11	8/30/2017	7.9	0.095	83	2.79	0.84	12	2.06	0.69	0.065	19		0.75	1.6	0.62		64	21		8.26	0.59
12	8/31/2017	8.0	0.085	94	2.82	0.84	8	2.75	0.86	0.073	18		0.63	2.1	09.0		84	19		8.36	0.54
	Average	9.3	0.099	94	2.69	0.90		2.29	0.625	0.061	18		0.72	1.89	0.59		59	40		8.37	0.51
	Minimum	8.6	0.099	90	2.72	0.91	- 0	1 89	0.610	0.047	15 15 745		0.63	1.92	0.57		61	39 13		8.43 7 78	0.503
	Maximum	12.5	0.120	122	3.13	0.97	13	2.76	0.857	0.079	22.210		0.75	2.08	0.62		92	62		8.68	0.620
	Count	12	12	12	12	12	12	12	12	12	12		12	12	12		12	12		12	12

Pinnal multi	Image Image <th< th=""><th>$\begin{array}{$</th><th>10 10 <th <="" colspan="12" th=""><th>ctor 1.55</th><th>-</th><th>Reported Flow COD C</th><th>mgd mg/L</th><th>5.6 828</th><th>4.9 786</th><th>4.7 781</th><th>5.0 653</th><th>5.0 775</th><th>5.0 693</th><th>5.1 626</th><th>5.3 524</th><th>3.8 457</th><th>2.7 524</th><th>4.0 617</th><th>6.2 629</th><th>4.8 658</th><th>5.0 641 2.7 AF7</th><th>6.2 828</th><th>12 12</th><th>= Data Scr</th><th>OZ</th><th></th><th>COD:TKN TP:TKN</th><th>19.2 0.188</th><th>18.3 0.200</th><th>13.7 0.182</th><th>40.2 0.437</th><th>14.2 0.1/9</th><th>12.4 0.160</th><th>10.3 0.152</th><th>12.9 0.176</th><th>10.10 10.171</th><th>17.1 0.199</th><th>15.2 0.180</th><th></th></th></th></th<>	$ \begin{array}{ $	10 10 <th <="" colspan="12" th=""><th>ctor 1.55</th><th>-</th><th>Reported Flow COD C</th><th>mgd mg/L</th><th>5.6 828</th><th>4.9 786</th><th>4.7 781</th><th>5.0 653</th><th>5.0 775</th><th>5.0 693</th><th>5.1 626</th><th>5.3 524</th><th>3.8 457</th><th>2.7 524</th><th>4.0 617</th><th>6.2 629</th><th>4.8 658</th><th>5.0 641 2.7 AF7</th><th>6.2 828</th><th>12 12</th><th>= Data Scr</th><th>OZ</th><th></th><th>COD:TKN TP:TKN</th><th>19.2 0.188</th><th>18.3 0.200</th><th>13.7 0.182</th><th>40.2 0.437</th><th>14.2 0.1/9</th><th>12.4 0.160</th><th>10.3 0.152</th><th>12.9 0.176</th><th>10.10 10.171</th><th>17.1 0.199</th><th>15.2 0.180</th><th></th></th>	<th>ctor 1.55</th> <th>-</th> <th>Reported Flow COD C</th> <th>mgd mg/L</th> <th>5.6 828</th> <th>4.9 786</th> <th>4.7 781</th> <th>5.0 653</th> <th>5.0 775</th> <th>5.0 693</th> <th>5.1 626</th> <th>5.3 524</th> <th>3.8 457</th> <th>2.7 524</th> <th>4.0 617</th> <th>6.2 629</th> <th>4.8 658</th> <th>5.0 641 2.7 AF7</th> <th>6.2 828</th> <th>12 12</th> <th>= Data Scr</th> <th>OZ</th> <th></th> <th>COD:TKN TP:TKN</th> <th>19.2 0.188</th> <th>18.3 0.200</th> <th>13.7 0.182</th> <th>40.2 0.437</th> <th>14.2 0.1/9</th> <th>12.4 0.160</th> <th>10.3 0.152</th> <th>12.9 0.176</th> <th>10.10 10.171</th> <th>17.1 0.199</th> <th>15.2 0.180</th> <th></th>												ctor 1.55	-	Reported Flow COD C	mgd mg/L	5.6 828	4.9 786	4.7 781	5.0 653	5.0 775	5.0 693	5.1 626	5.3 524	3.8 457	2.7 524	4.0 617	6.2 629	4.8 658	5.0 641 2.7 AF7	6.2 828	12 12	= Data Scr	OZ		COD:TKN TP:TKN	19.2 0.188	18.3 0.200	13.7 0.182	40.2 0.437	14.2 0.1/9	12.4 0.160	10.3 0.152	12.9 0.176	10.10 10.171	17.1 0.199	15.2 0.180	
Interface Antimaty 3 Effluent. Antin a timaty 3 Effluent. Antin a timaty	10 10	Image: Planet Pl	mutual mutual<		-	SOD (WRP) C	mg/L n.	650 3	890 3	800 3	920 2	655 2	590 2	600 2	500 2	660 1	450 2	520 2	650 2	657 2	650 450	920	5	ree ned from data	GENERAL	COD(WRP):	COD	0./9 1	1.02	1.41	0.85	90 0	0.95	1.44 t	0.86	1 034	1.01	96.0													
12 12 <th< td=""><td>Interval Aftinary 3 Efficient - Afticate partialized 146 <th colspa<="" td=""><td>13 <th <="" colspan="2" td=""><td>10 1</td><td></td><td>-</td><td>tered ffCOD</td><td>ig/L mg/L</td><td>40</td><td>90</td><td>10</td><td>67</td><td>67</td><td>74</td><td>76</td><td>20</td><td>97</td><td>42</td><td>67</td><td>72</td><td>570</td><td>270</td><td>140</td><td>12 0</td><td>tset</td><td></td><td></td><td>D:TP BOD5:TS</td><td>0.7 2.06</td><td>32 2.27</td><td>76 1.96</td><td>92 2.27</td><td>04 2.30 21 2.10</td><td>77 1.60</td><td>38 2.48</td><td>74 2.42</td><td>32 2.84</td><td>35 2.21</td><td>37 2.23</td><td>001</td></th></td></th></td></th<>	Interval Aftinary 3 Efficient - Afticate partialized 146 <th colspa<="" td=""><td>13 <th <="" colspan="2" td=""><td>10 1</td><td></td><td>-</td><td>tered ffCOD</td><td>ig/L mg/L</td><td>40</td><td>90</td><td>10</td><td>67</td><td>67</td><td>74</td><td>76</td><td>20</td><td>97</td><td>42</td><td>67</td><td>72</td><td>570</td><td>270</td><td>140</td><td>12 0</td><td>tset</td><td></td><td></td><td>D:TP BOD5:TS</td><td>0.7 2.06</td><td>32 2.27</td><td>76 1.96</td><td>92 2.27</td><td>04 2.30 21 2.10</td><td>77 1.60</td><td>38 2.48</td><td>74 2.42</td><td>32 2.84</td><td>35 2.21</td><td>37 2.23</td><td>001</td></th></td></th>	<td>13 <th <="" colspan="2" td=""><td>10 1</td><td></td><td>-</td><td>tered ffCOD</td><td>ig/L mg/L</td><td>40</td><td>90</td><td>10</td><td>67</td><td>67</td><td>74</td><td>76</td><td>20</td><td>97</td><td>42</td><td>67</td><td>72</td><td>570</td><td>270</td><td>140</td><td>12 0</td><td>tset</td><td></td><td></td><td>D:TP BOD5:TS</td><td>0.7 2.06</td><td>32 2.27</td><td>76 1.96</td><td>92 2.27</td><td>04 2.30 21 2.10</td><td>77 1.60</td><td>38 2.48</td><td>74 2.42</td><td>32 2.84</td><td>35 2.21</td><td>37 2.23</td><td>001</td></th></td>	13 13 <th <="" colspan="2" td=""><td>10 1</td><td></td><td>-</td><td>tered ffCOD</td><td>ig/L mg/L</td><td>40</td><td>90</td><td>10</td><td>67</td><td>67</td><td>74</td><td>76</td><td>20</td><td>97</td><td>42</td><td>67</td><td>72</td><td>570</td><td>270</td><td>140</td><td>12 0</td><td>tset</td><td></td><td></td><td>D:TP BOD5:TS</td><td>0.7 2.06</td><td>32 2.27</td><td>76 1.96</td><td>92 2.27</td><td>04 2.30 21 2.10</td><td>77 1.60</td><td>38 2.48</td><td>74 2.42</td><td>32 2.84</td><td>35 2.21</td><td>37 2.23</td><td>001</td></th>	<td>10 1</td> <td></td> <td>-</td> <td>tered ffCOD</td> <td>ig/L mg/L</td> <td>40</td> <td>90</td> <td>10</td> <td>67</td> <td>67</td> <td>74</td> <td>76</td> <td>20</td> <td>97</td> <td>42</td> <td>67</td> <td>72</td> <td>570</td> <td>270</td> <td>140</td> <td>12 0</td> <td>tset</td> <td></td> <td></td> <td>D:TP BOD5:TS</td> <td>0.7 2.06</td> <td>32 2.27</td> <td>76 1.96</td> <td>92 2.27</td> <td>04 2.30 21 2.10</td> <td>77 1.60</td> <td>38 2.48</td> <td>74 2.42</td> <td>32 2.84</td> <td>35 2.21</td> <td>37 2.23</td> <td>001</td>		10 1		-	tered ffCOD	ig/L mg/L	40	90	10	67	67	74	76	20	97	42	67	72	570	270	140	12 0	tset			D:TP BOD5:TS	0.7 2.06	32 2.27	76 1.96	92 2.27	04 2.30 21 2.10	77 1.60	38 2.48	74 2.42	32 2.84	35 2.21	37 2.23	001									
Filtered Transity 3 Efflicant - Adjusted 12 13 13 13 moli. moli. <td>Filmered Infinetion I</td> <td>12 12 15 <th c<="" td=""><td>Filtered Transity 3 Efficient. 12 14 12 14 15 14 15 <!--</td--><td>1.55</td><td>-</td><td>CBOD5</td><td>mg/L</td><td>392</td><td>372</td><td>394</td><td>310</td><td>316</td><td>332</td><td>322</td><td>248</td><td>239</td><td>285</td><td>295</td><td>285</td><td>316</td><td>313</td><td>394</td><td>12</td><td></td><td></td><td></td><td>S VSS:TSS</td><td>0.95</td><td>0.88</td><td>0.90</td><td>0.92</td><td>0.97</td><td>0.94</td><td>0.95</td><td>0.91</td><td>0.94</td><td>0.93</td><td>0.94</td><td></td></td></th></td>	Filmered Infinetion I	12 12 15 <th c<="" td=""><td>Filtered Transity 3 Efficient. 12 14 12 14 15 14 15 <!--</td--><td>1.55</td><td>-</td><td>CBOD5</td><td>mg/L</td><td>392</td><td>372</td><td>394</td><td>310</td><td>316</td><td>332</td><td>322</td><td>248</td><td>239</td><td>285</td><td>295</td><td>285</td><td>316</td><td>313</td><td>394</td><td>12</td><td></td><td></td><td></td><td>S VSS:TSS</td><td>0.95</td><td>0.88</td><td>0.90</td><td>0.92</td><td>0.97</td><td>0.94</td><td>0.95</td><td>0.91</td><td>0.94</td><td>0.93</td><td>0.94</td><td></td></td></th>	<td>Filtered Transity 3 Efficient. 12 14 12 14 15 14 15 <!--</td--><td>1.55</td><td>-</td><td>CBOD5</td><td>mg/L</td><td>392</td><td>372</td><td>394</td><td>310</td><td>316</td><td>332</td><td>322</td><td>248</td><td>239</td><td>285</td><td>295</td><td>285</td><td>316</td><td>313</td><td>394</td><td>12</td><td></td><td></td><td></td><td>S VSS:TSS</td><td>0.95</td><td>0.88</td><td>0.90</td><td>0.92</td><td>0.97</td><td>0.94</td><td>0.95</td><td>0.91</td><td>0.94</td><td>0.93</td><td>0.94</td><td></td></td>	Filtered Transity 3 Efficient. 12 14 12 14 15 14 15 </td <td>1.55</td> <td>-</td> <td>CBOD5</td> <td>mg/L</td> <td>392</td> <td>372</td> <td>394</td> <td>310</td> <td>316</td> <td>332</td> <td>322</td> <td>248</td> <td>239</td> <td>285</td> <td>295</td> <td>285</td> <td>316</td> <td>313</td> <td>394</td> <td>12</td> <td></td> <td></td> <td></td> <td>S VSS:TSS</td> <td>0.95</td> <td>0.88</td> <td>0.90</td> <td>0.92</td> <td>0.97</td> <td>0.94</td> <td>0.95</td> <td>0.91</td> <td>0.94</td> <td>0.93</td> <td>0.94</td> <td></td>	1.55	-	CBOD5	mg/L	392	372	394	310	316	332	322	248	239	285	295	285	316	313	394	12				S VSS:TSS	0.95	0.88	0.90	0.92	0.97	0.94	0.95	0.91	0.94	0.93	0.94												
TITINAY 3 Effluent - Adjusted 10 10 105	12 12 12 12 15 15 15 15 155	12 12 125 155	12 12 15 <th <<="" colspan="6" td=""><td></td><td></td><td>Filtered CBOD5</td><td>mg/L</td><td>167</td><td>161</td><td>156</td><td>108</td><td>112</td><td>122</td><td>134</td><td>84</td><td>62</td><td>93</td><td>121</td><td>113</td><td>119</td><td>117</td><td>167</td><td>12</td><td>Adjusted data</td><td></td><td></td><td>ISS</td><td>љ o</td><td>20</td><td>16</td><td>11</td><td>с ч</td><td>6</td><td>5</td><td>11</td><td>٩ 12</td><td>10</td><td>6</td><td></td></th>	<td></td> <td></td> <td>Filtered CBOD5</td> <td>mg/L</td> <td>167</td> <td>161</td> <td>156</td> <td>108</td> <td>112</td> <td>122</td> <td>134</td> <td>84</td> <td>62</td> <td>93</td> <td>121</td> <td>113</td> <td>119</td> <td>117</td> <td>167</td> <td>12</td> <td>Adjusted data</td> <td></td> <td></td> <td>ISS</td> <td>љ o</td> <td>20</td> <td>16</td> <td>11</td> <td>с ч</td> <td>6</td> <td>5</td> <td>11</td> <td>٩ 12</td> <td>10</td> <td>6</td> <td></td>								Filtered CBOD5	mg/L	167	161	156	108	112	122	134	84	62	93	121	113	119	117	167	12	Adjusted data			ISS	љ o	20	16	11	с ч	6	5	11	٩ 12	10	6							
Primary 3 Effluent - Adjusted Trived Trived Trived mgLas N Hat Mitrates mgLas N Total Mitrates mgLas N Total Mitrates mgLas N Hat Mitrates mgLas N Total Mitrates mgLas N Total MgLas N Total	12 12 15 15 15 15 15 155 155 155 155 155 155 155 155 155 155 155 155 155 156 </td <td>IS IS IS</td> <td>12 12 15 15 15 15 15 15 155 15 155</td> <td></td> <td>ŀ</td> <td>TKN</td> <td>mg/L as N</td> <td>43</td> <td>43.3</td> <td>42.7</td> <td>47.5</td> <td>19.3</td> <td>46</td> <td>44</td> <td>42.4</td> <td>44.5</td> <td>40.5</td> <td>40.3</td> <td>40.5</td> <td>41</td> <td>54 6</td> <td>8</td> <td>12</td> <td></td> <td>SOLIDS CH</td> <td>Fcvxi/s pCOD:VS</td> <td>s</td> <td>2.69</td> <td>3.07</td> <td>2.70</td> <td>3.95</td> <td>3.U/ 2.48</td> <td>2.09</td> <td>2.85</td> <td>2.64</td> <td>3.08</td> <td>2.90</td> <td>2.77</td> <td></td>	IS IS	12 12 15 15 15 15 15 15 155 15 155		ŀ	TKN	mg/L as N	43	43.3	42.7	47.5	19.3	46	44	42.4	44.5	40.5	40.3	40.5	41	5 4 6	8	12		SOLIDS CH	Fcvxi/s pCOD:VS	s	2.69	3.07	2.70	3.95	3.U/ 2.48	2.09	2.85	2.64	3.08	2.90	2.77													
Ty3 Effluent - Adjusted 12 15 15 15 15 15 156 151 155	Indication Indicat	Ty3 Effluent - Adjuste 12 15 16<	Indicational light 12 15		Prima	Filtered TKN	mg/Las N r																•		ARACTERIZA		pN:VSS	0.24	0.28	0.33	0.15	0.34	0.29	0.49	0.38	0.34	0.316	0.323	0.1 0.0												
		15 156 <th 1<="" colspan="6" td=""><td>15 1</td><td></td><td>iry 3 Effl</td><td>NH3</td><td>ng/L as N</td><td>26.5</td><td>27</td><td>29.3</td><td>33.7</td><td>30</td><td>30.8</td><td>29.4</td><td>30.6</td><td>33.4</td><td>31.5</td><td>29.5</td><td>29.2</td><td>30</td><td>8 5</td><td>2 2</td><td>12</td><td></td><td>VLION</td><td></td><td>pP:VSS</td><td>0.045</td><td>0.056</td><td>0.061</td><td>0.066</td><td>00000</td><td>0.047</td><td>0.074</td><td>0.067</td><td>1/0.0</td><td>0.059</td><td>0.060</td><td></td></th>	<td>15 1</td> <td></td> <td>iry 3 Effl</td> <td>NH3</td> <td>ng/L as N</td> <td>26.5</td> <td>27</td> <td>29.3</td> <td>33.7</td> <td>30</td> <td>30.8</td> <td>29.4</td> <td>30.6</td> <td>33.4</td> <td>31.5</td> <td>29.5</td> <td>29.2</td> <td>30</td> <td>8 5</td> <td>2 2</td> <td>12</td> <td></td> <td>VLION</td> <td></td> <td>pP:VSS</td> <td>0.045</td> <td>0.056</td> <td>0.061</td> <td>0.066</td> <td>00000</td> <td>0.047</td> <td>0.074</td> <td>0.067</td> <td>1/0.0</td> <td>0.059</td> <td>0.060</td> <td></td>						15 1		iry 3 Effl	NH3	ng/L as N	26.5	27	29.3	33.7	30	30.8	29.4	30.6	33.4	31.5	29.5	29.2	30	8 5	2 2	12		VLION		pP:VSS	0.045	0.056	0.061	0.066	00000	0.047	0.074	0.067	1/0.0	0.059	0.060							
12 152 155 141 155 141 155 141 155 141 155 141 155 141 155 141 155 141 155	12 135 156 156 156 Ijusted Futnad P Pod4P Total Ak 758 VSS p #gLas P mgLas P mgLas P mgLas P mgLas P mgLas P mgL 8 6 81 477 428 Total Ak TSS VSS 6	12 1.55 1	12 135 156 156 156 156 156 10usted Funder Pod4P TotalAk TS VSS PH Tomp Funder 81 mgLas P		uent - Ac	(Grab) Nitrate	as N, mg/L																0			FupN	pN/pCOD	0.000	0.091	0.123	0.038	0.1.0	0.140	0.171	0.144	0.112 0.112	0.112	0.114	0000												
Illiend P PO4-P Total Alk TSS mg/Las P mg/Las P mg/Las P mg/Las P mg/La 454 410 192 192 192 454 410 192 192 192 455 440 188 192 192 455 440 140 192 147 549 400 146 146 146 455 440 146 146 146 456 440 146 146 146 147 443 148 146 146 148 433 104 145 147 145 448 448 148 146 148 433 104 145 146 145 438 148 96 146 146 148 438 148 96 146 146 146 145 438 148 96 146<	Illioned P PoutP Total AK TSS 155 155 155 mglLas P <	Illoand P PoutP Touli Alk Tss 155 155 myL as P myL Tom myL as P myL Tom myL as P myL Tom dist 445 440 174 181 6.75 E dist 455 456 141 136 6.7 E E dist 455 446 143 141 136 6.7 E E dist 455 446 143 144 136 6.7 E E dist 45 445 144 144 136 7 E E E dist 45 445 144 144 136 7 E E E E E E E E E	Ibond P PoutP Tonia MK TSS NSS PH Tonia mglLas P mglLas P <td< td=""><td>1.2</td><td>ljusted</td><td>Total P</td><td>mg/L as P</td><td>8.1</td><td>8.4</td><td>8.5</td><td>8.6</td><td>8.4</td><td>8.2</td><td>6.9</td><td>6.8</td><td>6.7</td><td>7.1</td><td>6.9</td><td>7.7</td><td>7.7</td><td>7.9 6.7</td><td>8.6</td><td>12</td><td></td><td></td><td>FupP</td><td>pP:pCOD</td><td>0.017</td><td>0.018</td><td>0.022</td><td>0.017</td><td>0.020</td><td>0.022</td><td>0.026</td><td>0.025</td><td>0.020</td><td>0.020</td><td>0.020</td><td>1 200</td></td<>	1.2	ljusted	Total P	mg/L as P	8.1	8.4	8.5	8.6	8.4	8.2	6.9	6.8	6.7	7.1	6.9	7.7	7.7	7.9 6.7	8.6	12			FupP	pP:pCOD	0.017	0.018	0.022	0.017	0.020	0.022	0.026	0.025	0.020	0.020	0.020	1 200												
PO4-P Total Alk TSS mgl_as P mgl_as P mgl_as P 477 435 141 455 440 192 519 470 186 461 470 186 465 440 192 466 470 186 465 440 140 477 445 141 407 445 146 414 443 146 451 443 148 453 446 146 454 443 148 454 443 144 451 443 164 451 443 164 451 443 164 451 445 145 452 43 164 21 033 104 21 033 21 21 043 145 13 044	PO4P Total Alk TSS VSS 156 mg/Las P mg/Las Cacco mg/L KSS VSS P 477 445 141 178 VSS F F 455 440 172 143 141 141 6 6 465 440 142 143 6	Total Mix Total Aix Total Aix <thtotal aix<="" th=""> <thtotal aix<="" th=""> <tht< td=""><td>PO4P Total Alk TSS VSS PH Tomp mgll as P mgll as Caclor mgll. mgl. F Motes 477 428 192 183 667 F Motes 455 440 181 675 F Motes 519 470 188 143 677 F Motes 465 460 192 183 667 F Motes 396 471 143 173 687 F Motes 445 443 143 173 697 F Motes 445 445 144 136 697 F Motes 451 443 104 98 697 7 0 F Motes 451 443 104 98 697 7 0 F Mathint 22 23 12 12 0 7 0 950 <td< td=""><td></td><td> </td><td>Filtered P</td><td>mg/L as P</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>Fna</td><td>NH3:TKN</td><td>0.62</td><td>0.69</td><td>0.71</td><td>1.55</td><td>0.07</td><td>0.72</td><td>0.75</td><td>0.78</td><td>0.73</td><td>0.77</td><td>0.72</td><td></td></td<></td></tht<></thtotal></thtotal>	PO4P Total Alk TSS VSS PH Tomp mgll as P mgll as Caclor mgll. mgl. F Motes 477 428 192 183 667 F Motes 455 440 181 675 F Motes 519 470 188 143 677 F Motes 465 460 192 183 667 F Motes 396 471 143 173 687 F Motes 445 443 143 173 697 F Motes 445 445 144 136 697 F Motes 451 443 104 98 697 7 0 F Motes 451 443 104 98 697 7 0 F Mathint 22 23 12 12 0 7 0 950 <td< td=""><td></td><td> </td><td>Filtered P</td><td>mg/L as P</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>Fna</td><td>NH3:TKN</td><td>0.62</td><td>0.69</td><td>0.71</td><td>1.55</td><td>0.07</td><td>0.72</td><td>0.75</td><td>0.78</td><td>0.73</td><td>0.77</td><td>0.72</td><td></td></td<>			Filtered P	mg/L as P																0			Fna	NH3:TKN	0.62	0.69	0.71	1.55	0.07	0.72	0.75	0.78	0.73	0.77	0.72													
Total Alk Tss 155 Total Alk TSS 192 410 192 192 426 141 192 426 141 192 426 141 192 426 141 192 446 156 141 446 146 156 443 194 144 443 194 144 443 194 144 443 194 144 443 146 145 443 194 144 443 194 144 443 194 144 443 194 144 444 144 144 443 104 145 444 144 144 444 144 144 444 144 144 444 144 144 444 144 1	Total Alk TSS VSS 156 Total Alk TSS VSS 156 TgUL as CarGot mg/L mg/L 6 410 172 133 61 426 141 172 153 61 426 141 136 6 6 440 158 141 133 61 445 141 136 6 6 445 141 143 6 6 443 148 144 139 6 6 443 144 144 139 6 6 443 144 144 139 6 6 443 144 144 139 1 1 43 130 144 139 1 1 43 130 144 139 6 6 434 144 144 139 1 1 <t< td=""><td>Total Alk TSS 155 156 Total Alk TSS VSS PH Tomm mg/L ac GalCot mg/L mg/L 6/7 F 410 192 193 6/7 F 420 141 131 6/7 F 420 142 133 6/7 F 440 143 133 6/7 F 445 141 133 6/7 F 445 143 144 6/7 F 443 144 144 7 6/4 Fus 443 144 144 7 6/7 Fus 443 144 144 7 7 0 443 144 144 7 7 0 445 144 144 7 7 0 445 144 144 7 7 0 445 144 144 7</td><td>Total Alk Tss vss pH Temp Motes Total Alk Tss vss pH F Notes mg/L as Cacool mg/L mg/L mg/L mg/L F Notes 418 192 183 667 F Notes Notes 428 140 123 667 F Notes Notes 420 143 673 667 F Notes Notes 426 141 129 6.7 F Notes F Notes 446 147 141 6.7 F F Notes 443 104 98 6.9 7 7 P F Notes F 443 144 135 7 7 0 P F Notes F F Notes F F Notes F F Notes F F F F F F<td></td><td></td><td>P04-P</td><td>mg/L as P</td><td>4.77</td><td>4.64</td><td>4.45</td><td>5.19</td><td>4.65</td><td>4.55</td><td>4.07</td><td>3.96</td><td>4.40</td><td>4.17</td><td>4.08</td><td>4.51</td><td>4.5</td><td>4.5</td><td>5.2</td><td>12</td><td></td><td></td><td></td><td>COD: BOD</td><td>2.1</td><td>2.0</td><td>2.1</td><td>2.5</td><td>10</td><td>2.1</td><td>1.9</td><td>1.8</td><td>1.2</td><td>2.08</td><td>2.10</td><td>1 0.4</td></td></t<>	Total Alk TSS 155 156 Total Alk TSS VSS PH Tomm mg/L ac GalCot mg/L mg/L 6/7 F 410 192 193 6/7 F 420 141 131 6/7 F 420 142 133 6/7 F 440 143 133 6/7 F 445 141 133 6/7 F 445 143 144 6/7 F 443 144 144 7 6/4 Fus 443 144 144 7 6/7 Fus 443 144 144 7 7 0 443 144 144 7 7 0 445 144 144 7 7 0 445 144 144 7 7 0 445 144 144 7	Total Alk Tss vss pH Temp Motes Total Alk Tss vss pH F Notes mg/L as Cacool mg/L mg/L mg/L mg/L F Notes 418 192 183 667 F Notes Notes 428 140 123 667 F Notes Notes 420 143 673 667 F Notes Notes 426 141 129 6.7 F Notes F Notes 446 147 141 6.7 F F Notes 443 104 98 6.9 7 7 P F Notes F 443 144 135 7 7 0 P F Notes F F Notes F F Notes F F Notes F F F F F F <td></td> <td></td> <td>P04-P</td> <td>mg/L as P</td> <td>4.77</td> <td>4.64</td> <td>4.45</td> <td>5.19</td> <td>4.65</td> <td>4.55</td> <td>4.07</td> <td>3.96</td> <td>4.40</td> <td>4.17</td> <td>4.08</td> <td>4.51</td> <td>4.5</td> <td>4.5</td> <td>5.2</td> <td>12</td> <td></td> <td></td> <td></td> <td>COD: BOD</td> <td>2.1</td> <td>2.0</td> <td>2.1</td> <td>2.5</td> <td>10</td> <td>2.1</td> <td>1.9</td> <td>1.8</td> <td>1.2</td> <td>2.08</td> <td>2.10</td> <td>1 0.4</td>			P04-P	mg/L as P	4.77	4.64	4.45	5.19	4.65	4.55	4.07	3.96	4.40	4.17	4.08	4.51	4.5	4.5	5.2	12				COD: BOD	2.1	2.0	2.1	2.5	10	2.1	1.9	1.8	1.2	2.08	2.10	1 0.4												
155 191 191 191 192 193 193 193 193 193 193 193 193 193 193	TISS VSS Page mg/L mg/L mg/L 191 181 6 192 163 6 192 163 6 114 138 6 141 138 6 142 143 6 144 138 6 145 143 6 144 138 6 144 138 6 144 138 6 144 139 6 144 135 1 145 144 135 144 135 1 145 135 1 145 136 1 145 133 1 145 133 1 145 133 1 145 133 1 145 133 1 145 133 1 146	Iss 158 158 PH Tenm mpL mpL mpL F Tenm 191 181 6/7 E E 192 133 6/67 E E 192 133 6/7 E E 193 141 133 6/7 E E 144 143 6/7 E	155 156 156 PH Tomp Motes mgL mgL 181 6.7 F Notes 191 181 6.7 F Notes Notes 192 183 6.67 F Notes Notes 192 183 6.67 F Notes Notes 193 6.7 6.7 F Notes Notes 143 6.7 6.7 F Notes Notes 143 136 6.7 F Notes Notes 144 136 6.7 F Notes Notes 144 136 6.97 F Notes Notes 144 136 7 7 9 Notes Notes 144 137 7 9 7 9 9 144 136 7 7 9 9 9 144		Ī	Total Ak	ng/L as CaCO3	428	418	440	470	460	455	445	446	454	443	443	438	445	444	470	13		00		SCOD:COD	0.41	0.40	0.41	0.34	0.40	0.42	0.43	0.46	0.43	0.41	0.42													
	156 156 156 156 156 156 156 156	156 PH Tenm mg/L F Tenm mg/L F F 181 6.75 F 183 6.67 F 183 6.67 F 183 6.67 F 183 6.75 F 184 6.87 F 184 6.87 F 184 6.97 F 184 6.97 F 184 7 9 185 7 7 185 7 7 183 7 7 183 7 7 183 7 7 183 7 7 183 7 7 183 7 7 183 7 7 183 7 7 183 7 7 183 7 7 183 6.06	155 PH Tomp Motes mg/L F Motes Motes 181 6.75 F Motes 183 6.67 F Motes 183 6.67 F Motes 183 6.67 F Motes 184 6.75 F Motes 183 6.75 F Motes 184 6.75 F Motes 185 7 F F F 185 7 7 0 F F 183 7 0 F F F 193 7 0 F F F 133 7 0 F F F 133 7<	1.55	ŀ	TSS	mg/L	191	192	174	158	140	141	147	155	96	118	104	130	145	14 14	192	12		D FRACTO	CC	RBCOD							t a	7																

																	+		+	+	o	е .	, ,				+			-	Η				2	+	1
		-						_		_								_			age D	Train	ma/l	13.0	12.9	10.8	7.7	200	8.9	9.3	9.7	11.5	8.7	9.0	10.0	9.48	1
		표		5.83	5.93	5.97	5.97	5.92	5.95	5.98	5.90	5.83	6.00	6.03	5.95	5.9	6.0	12			2nd St	Train 2	ma/L	6.7	7.6	5.6	22	94	2.2	2.8	3.3	4.6	2.5	3.0	3.92	3.14	2
		Oxygen Flow	cfm	247	248	228	232	253	211	209	203	192	199	212	257	224	220	5			POH	Train 1	ma/L	8.9	9.9	7.4	5.8	0 a a	0.0	8.1	8.7	7.6	2.4	4.5	7.09	7.53	2
	S)	WAS	mgd	0.067	0.076	060.0	0.094	0.100	0.091	0.089	0.090	0.090	060.0	0.079	0.075	0.09	0.09	12			RAS	Theone	ported	1.13	1.12	1.09	1.07	106	1.14	1.22	1.32	1.12	1.17	0.93	1.13	1.13	2
	HPOA	RAS TSS	mg/L	9,000	9,000	9,150	8,950	8,300	7,900	7,250	6,550	6,200	6,200	5,700	6,250	7538	7575	12			Calc	Thoony	100011	10185	10111	10017	9557	2002	8257	7982	8188	6974	6665	5800	8476	8325	2
	fying	RAS flow	mgd	4.58	5.44	5.58	5.33	5.11	5.10	4.70	5.08	6.13	6.77	7.11	6.11	5.59	5.39	12				τας	davs	13.2	10.4	8.6	7.4	0.0	9.5 9.5	8.5	9.7	7.7	9.0	9.4	9.2	8.8 6.7	1
	r (Nitr	Total P	mg/L as P	130	121	120	106	110	103	66	100	101	79	89	89	104	102	12			nt 2	Hvd SPT	davs														
	Liquo	TKN	g/L as N	241	231	242	227	221	196	207	201	198	168	182	162	206	204	12			ge Pla	I Vec.	MLSS	79%	77%	77%	80%	7007	78%	78%	76%	79%	78%	78%	78%	78%	1
	Mixed	NH3-N	mg/L n	6.74	4.00	3.89	3.43	3.03	3.31	3.31	3.60	5.29	6.71	6.43	4.89	4.6	3.9	12			d Slud	- SV C	VSS	7146	6955	7084	7133 6646	8205	5659	5125	4740	4909	4428	4869	5900	5932	2
	Stage	GO	mg/L	3,910	4,420	3,850	3,510	3,680	2,860	3,510	8720	3,290	2,460	2,760	2,460	3337	3510	=			ctivate		VSS	8.2%	8.5%	9.2%	8.6%	0.0.0 8.6%	9.2%	9.0%	8.8%	8.7%	9.0%	8.4%	8.7%	8.6%	2
	2nd	LVSS	mg/L	2,930	2,720	2,640	2,630	2,610	270	240	2,230	2.240	,940	2,020	,940	2368	2255	12			HPO A		SSV:0	4.4%	4.4%	4.6%	4.0%	1 50%	4.4%	4.5%	4.5%	4.1%	4.4%	4.6%	4.4%	4%	2
		W	ng/L	690	,520 2	410 2	300	,310 2	890 2	,870 2	,850 2	,930 2	,450 1	,600	,490	1026	910	13			Γ	ė	/SS TF	1.33	1.63	1.46	.33	ac	20	3.91	1.47	1.27	1.37	1.27	40	.37	Ę
		Noi	ngd	8.1 3	10.3 3	9.01	10.2 3	9.8 3	9.8 2	8.9 2	9.3 2	11.1 2	12.6 2	1.2 2	8.2 2	10.0	0.0	12					, -		_						-				10/20	WN (-
s		ц т	-	35	40	49	41	58	53	.61	.51	.53	56	48	42	3.5		12			õ		a/L			_	+			_				_	IX/0i #L	iwn o	
n Basir		jen W	E	6 6	5 6	5 6	2 6	7 6	4 6	5 6	4 6	3 6	6 6	1 6	3 6	9	- -	_			Stage I	n 2 3	ם ב	5	7	2	6	~	t 99	2	5	7	9	6	47 #D	N# 60	
eratio		S S S S S S S	C D	8	8 12	14	14	17 17	15	6 16	6 17	6 18	6 16	6 13	6 14	2 15	~~ ₽	-			0 1st	1 Trai		9	8	9	. ÷		19	9 19	3 20	3 19	1	80	5	8 12	-
HPO A	(5	ss	- mg	0 0.23	0 0.23	0 0.23	0 0.23	0 0.23	0 0.20	0 0.21	0 0.21	0 0.21	0 0.21	0 0.21	0 0.21	0.2	0.2	5			보	Trair	ad ma/	.8	6.5	3.6	1.4	ę	18.	16.	19.4	18.	8.8	.9	4.1	9.5	1
	HPOAS	ow RAS T	l/gm	4,00	4,00	3,50	3,25	3,00	3,10	2,75	2,80	2,85	2,85	2,35	3,25	3142	3050	9			Ic. RAS	-	rv eport	1.13	9 1.22	7 1.15	1.23	112	1.12	2 1.22	2 1.26	1.14	1.52	3 1.17	12	121	1
	(BOD	P RAS fi	s P mgc	4.18	5.26	5.57	5.24	5.01	5.00	4.56	4.75	5.62	6.70	6.82	5.45	5.35	5.25	5			Ca		Theo	4532	4869	401	4005	245.5	846 840	841	3592	3251	356	380	379	362	1
	Liquor	Total	N mg/L a	36	30	27	28	27	30	29	27	30	25	29	33	29	53	13					davs	0.6	0.5	0.4	0.6	50	0.6	0.5	0.4	0.3	0.6	1.1	0.58	0.56	2
	Mixed	TKN	mg/L as	148	167	156	160	168	158	144	162	165	140	151	193	159	159	12	Ŧ		lant 1						_	_							¥DIV(NUN#	2
	Stage I	NH3-N	mg/L	25	22	21	24	28	31	29	29	32	24	21	26	26	55	5	rom datase		udge F	a d	VSS	3821	3556	3150	3005	7690	2510	2602	2614	2508	2138	2927	2852	2700	2
	1st (0 C	mg/L	1,630	4,640	3,230	3,740	3,040	2,760	2,200	1,860	2,400	2,050	1,950	2,120	2635	2300	5	creened fi		ted SI	N N C	:MLSS	%96	89%	80%	92%	07 70 95 0/2	91%	93%	92%	88%	91%	80%	91%	91%	2
		MLVSS	mg/L	1,600	1,600	1,350	1,350	1,220	1,110	1,150	1,180	1,220	1,100	1,310	1,450	1303	1265	5	= Data S		Activa	14 MA	VSS	9.3%	10.4%	11.6%	11.9%	74 2 0/2	12.5%	13.7%	13.5%	12.7%	11.5%	13.3%	12.4%	12.6%	2
		MLSS	mg/L	1,675	1,800	1,500	1,460	1,320	1,310	1,260	1,270	1,330	1,250	1,440	1,610	1435	1385	5			ОЧН		TP:VSS	2.3%	1.9%	2.0%	2.1%	702 0	2.5%	2.3%	2.4%	2.3%	2.2%	2.3%	2.3%	2.3%	2
		Flow	mgd	7.52	9.68	10.31	9.64	9.17	9.13	8.27	8.64	10.47	12.01	10.61	7.60	9.4	9.4	12				ġ	VSS	1.02	2.90	2.39	2.77	01.0	1.91	1.58	1.97	1.86	1.49	1.46	2.03	1.94	2
		ate		0/2017	1/2017	2/2017	3/2017	4/2017	5/2017	5/2017	7/2017	3/2017	3/2017	0/2017	1/2017	srage	edian	ount					ate	1/2017	1/2017	2/2017	3/2017	10017	3/2017	7/2017	3/2017	3/2017	0/2017	1/2017	erage	adian	OUIL
			~	8/2(8/2.	8/2	8/2:	8/24	8/24	8/26	8/2.	8/26	8/25	8/3(8/3	٩v	ž	ŭ						8/20	8/21	8/22	8/2:	2/12	8/26	8/27	8/26	8/26	8/30	8/31	Av	žċ	2
			Da	-	2	е	4	5	9	7	8	6	10	1	12								Day	-	2	3	4 4	2	2	8	6	9	11	12			

		depth														i0,	iN			
		Blanket (feet													/NIQ#	NUN#	0.0	0.0	0.0
		Н		6.42	6.5	6.47	6.51	6.6	6.6	6.6	6.59	6.6	6.6	6.6	6.6	6.5	9.9	6.4	6.6	12.0
		VSS	mg/L	80	125	120	71	39	121	74	87	107	119	72	21	86	84	21	125	12
		TSS	mg/L	88	133	139	17	41	133	75	93	116	134	78	23	94	91	23	139	12
		Total Ak	mg/L as CaCO3	379	379	400	401	411	405	394	385	404	403	383	397	395	399	379	411	12
luent		P04-P	mg/L as P	0.63	0.58	0.62	0.33	0.25	0.81	0.63	0.17	1.30	1.52	0.88	0.57	0.7	0.6	0.2	1.5	12
diate Eff		Total P	mg/L as P	2.25	3.02	3.13	1.77	1.15	3.49	1.94	1.66	3.26	3.60	2.07	1.09	2.4	2.2	1.1	3.6	12
Interme		NH3	mg/L as N	20.8	20.2	19.5	30.1	23.8	25.2	24.1	24.9	28.2	23.8	21.8	21.5	23.7	23.8	19.5	30.1	12
		TKN	mg/L as N	31.3	34.9	31.5	33.5	31.4	39.8	32.1	33.5	41.7	36.3	29.4	26.6	33.5	32.8	26.6	41.7	12
		CBOD5	mg/L		>22.5	>31.5	>24.4	23	>35	29	31	55	68	29	13	35	29	13	68	7
		Colloidal COD	mg/L	11	30	53	43	21	24	24	21	34	38	28		30	28	11	53	1
		ffcod	mg/L	43	28	39	47	45	32	32	43	41	37	32	69	38	39	28	47	11
	Filtered	coD	mg/L	54	58	92	06	66	56	56	64	75	75	60	60	67	62	54	92	12
		Flow	mgd	7.3	9.4	10.1	9.4	8.9	8.9	8.1	8.4	10.3	11.8	10.4	7.4	9.2	9.2	7.3	11.8	12
		Date		8/20/2017	8/21/2017	8/22/2017	8/23/2017	8/24/2017	8/25/2017	8/26/2017	8/27/2017	8/28/2017	8/29/2017	8/30/2017	8/31/2017	Average	Median	Minimum	Maximum	Count
			1		Br	ov	vn	ND	Ca	ld	Ne	แ								

									ų,	inal 1-4 l	Effluent																									
		Date	Flow	Filtered	4COD	CRODS	TKN	NH3	Nitrato/NOv	T otal D	DO4_D	TSS	SSV	Ţ	Alkalinity	Alum Food	Blanket Denth																			
	Day		mgd	mg/L	mg/L	mg/L	mg/L as N	mg/L as N	as N, mg/L	mg/L as P	mg/L as P	mg/L	mg/L		mgCaCO3/L	gpd	ft.																			
E	-	8/20/2017	8.0	34	20	3.4	2.2	<0.16	29.8	1.14	0.65	21	17	5.8	185	318	1.8																			
Bro	2	8/21/2017	10.2	30	13	4.8	3.7	<0.16	27.8	1.21	0.61	25	22	5.8	195	318	1.9																			
w	ю	8/22/2017	10.8	49	30	6.3	4.9	0.51	27.0	1.18	0.56	26	24	5.9	220	344	1.5																			
n	4	8/23/2017	10.1	49	26	6.9	4.6	0.51	26.6	1.18	0.61	39	30	5.9	215	399	2.0																			
ND	5	8/24/2017	9.7	47	28	4.9	4.4	0.66	33.0	1.19	0.60	27	22	5.9	196	398	1.9																			
Ca	9	8/25/2017	9.7	45	24	3.9	5.5	0.94	33.9	1.09	0.54	20	17	5.9	198	389	1.5																			
ld	7	8/26/2017	8.8	37	22	4.2	4.0	0.66	34.1	1.08	0.55	22	19	5.9	192	380	1.4																			
W	8	8/27/2017	9.2	49	28	4.6	4.1	0.51	33.6	1.11	0.62	38	36	5.9	187	378	1.4																			
ell	6	8/28/2017	11.0	52	26	5.3	7.9	4.49	31.9	1.13	0.70	25	20	5.8	202	384	1.3																			
	10	8/29/2017	12.5	52	32	7.4	10.9	7.05	25.6	1.32	0.75	26	20	6.0	237	445	1.5																			
	1	8/30/2017	11.2	54	28	5.7	8.5	3.36	26.6	1.55	0.85	32	25	6.0	222	507	4.1																			
	12	8/31/2017	8.2	45	41	5.9	5.2	0.51	31.4	1.69	0.96	33	24	6.0	194	508	0.5																			
		Average	6.6	45	27	5.3	5.5	1.9	30.1	1.2	0.67	28	23	5.9	204		1.5																			
		Median	9.9	48	27	5.1	4.8	0.7	30.6	1.2	0.62	26	22	5.9	197		1.5																			
		Minimum	8.0	30	13	3.4	2.2	0.5	25.6	1.1	0.54	20	17	5.8	185		0.5																			
		Maximum	12.5	54	4	7.4	10.9	7.1	34.1	1.7	96.0	39	36	6.0	237		2.0																			
		Count	12	12	12	12	12	10	12	12	12	12.0	12	12	12		12																			
				= Data Scr	eened from	dataset																														
	PO4-P	mg/L	5.1	11.4	7.6	6.7	8.3	8.4	8.3	9.7	9.3	9.8	9.8	10.1	6	6	12																			
----------------	----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	---------	--------	-------	----------------	---	----------	----------	-----------	--------	-----------	---------------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	---------	------------
	MLR	mgd	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12																			
	Hq		6.98	6.97	6.98	6.89	6.90	6.83	6.90	6.81	6.75	6.81	7.00	7.01	7	7	12					RAS	667	81/9	01/0 7083	7892	6095	6522	5638	5324	5056	5111	5167	5663		
	Airflow	cfm	5,744	5,140	4,840	4,480	6,112	6,523	5,741	6,940	6,750	5,217	3,582	5,326	5533	5533	12			0	Location	7	mg/L												#DIV/0	WUM:
	WAS	mgd	0.115	0.133	0.157	0.170	0.179	0.174	0.180	0.182	0.137	0.094	0.094	0.094	0.14	0.15	12		ľ		Location	-	mg/L												i0//IC#	IWNN#
	RAS TSS	mg/L	9,700	9,700	8,500	9300	7800	7900	6950	6,250	6,050	6,050	6200	6900	7608	7375	12			RAS	Theory:R	eported	Ras	1.02	0.04	0.85	0.96	0:00	0.93	1.03	0.99	1.00	1.02	0.90	0.95	0.95
	RAS flow	mgd	3.50	3.82	3.88	4.00	4.00	4.15	4.50	4.50	3.49	2.50	3.08	4.50	3.83	3.94	12		•	Calc		Theory	RAS	9895	20012 7068	7878	7518	7079	6465	6466	5977	6035	6309	6184	7199	6772
(ABC)	T otal P	mg/L as P	127.2	123.6	112.6	114.0	108	112	109	96.8	92.8	94.8	91.8	93.8	106	109	12				Total	SRT	ays	9.9 1	71	5.9	6.3	6.2	6.3	7.0	9.4	13.6	11.9	10.4	8.4	12
iquor (NH3-N	mg/L as N	1.71	2.86	3.60	2.86	4.74	5.60	3.31	4.17	4.89	4.44	4.55	4.72	4.0	4.3	12				Aerobic	SRT	aays	9.7	0.0 9	5.0	5.4	5.3	5.4	6.0	8.0	11.7	10.2	8.9	7.2	6.3 12
Mixed L	TKN	mg/L as N	275	268	296	272	269	239	240	277	232	218	190	162	245	254	12	aset		S		Hyd SRT	aays	9.4	9.2 8.1	7.3	7.0	7.3	7.3	7.1	9.8	14.4	13.0	12.6	9.36	8.65 12
asin 3/4 I	сор	mg/L	3800	4080	4060	3610	3570	3310	3210	3340	2610	2740	2930	2840	3342	3325	12	eened from dat		BC Basin		MLVSS:MLS	s S	84%	04.% 83%	85%	78%	83%	81%	85%	84%	84%	83%	82%	83%	83%
ш	MLVSS	mg/L	3,210	3,170	3,000	2970	2610	2650	2450	2,530	2,390	2,450	2300	2134	2655	2570	12	= Data Scr	'	◄		TKN:	VSS	8.0%	%0.0 %00	9.2%	10.3%	9.0%	9.8%	10.9%	9.7%	8.9%	8.3%	7.6%	9.2%	9.1% 12
	MLSS	mg/L	3,807	3,760	3,600	3500	3340	3210	3020	2,970	2,860	2,900	2760	2600	3194	3115	12						IP:VSS	4.0%	3.8%	3.8%	4.1%	4.2%	4.4%	3.8%	3.9%	3.9%	4.0%	4.4%	4.0%	3.9% 12
	Flow	mgd	5.6	4.9	4.7	5.0	5.0	5.0	5.1	5.3	3.8	2.7	4.0	6.2	4.8	5.0	12					COD	VSS	1.18	1.23 1.35	1.22	1.37	1.25	1.31	1.32	1.09	1.12	1.27	1.33	1.26	1.28
	Date		8/20/2017	8/21/2017	8/22/2017	8/23/2017	8/24/2017	8/25/2017	8/26/2017	8/27/2017	8/28/2017	8/29/2017	8/30/2017	8/31/2017	Average	Median	Count					·	Date	8/20/2017	8/22/2017	8/23/2017	8/24/2017	8/25/2017	8/26/2017	8/27/2017	8/28/2017	8/29/2017	8/30/2017	8/31/2017	Average	Count
		Day	-	2	ю	4	ъ	9	7	ø	6	10	1	12									Day		۶ď	4	5	9	7	8	6	10	1	12		

		Notes																		
		blanket veptn ft	2.5	2.0	2.0	3.0	3.0	4.0	1.0	3.5	2.0	2.0	0.5	3.0	2.4	2.3	0.5	4.0	12	
		gpm	0.0	46	161	160	159	161	162	161	164	130	79	79	121.9	159.8	0.0	164.4	12	
		Alkalinity mg/L CaCO3	282	292	285	274	274	267	283	278	257	252	272	285	275	276	252	292	12	
	1	5	7.2	7.2	7.1	7.2	7.1	7.1	6.9	7.1	7.0	6.9	7.0	7.2	7.1	7.1	6.9	7.2	12	
	100	vss mg/L	14.7	13.6	18.8	16.3	14.8	13.4	15.8	10.3	7.25	10	15.5	8	13.2	14.2	7.3	18.8	12	
ent)	001	n 35 mg/L	16	15	22	19	18	15	17	11	7	1	17	6	14.6	15.3	7.3	21.5	12.0	
SC Efflu		mg/Las P	0.07	0.04	0.09	0.08	0.07	0.06	0.06	0.05	<.033	0.06	0.05	0.03	90.0	0.06	0.03	0.09	11	
fluent (AE	0 1-1- L	n otal P mg/L as P	0.63	0.63	0.68	0.70	0.67	0.64	0.59	0.47	0.31	0.36	0.48	0.40	0.55	0.61	0.31	0.70	12	
Final 5 Ef		as N, mg/L	15.70	14.20	15.30	18.00	19.70	19.00	17.40	17.60	19.30	20.80	19.30	17.30	17.80	17.80	14.2	20.8	12	
		mg/L as N	< 0.16	< 0.16	0.23	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	0.17	< 0.16	< 0.16	< 0.16	0.2	0.2	0.2	0.2	2	
	TVN	mg/L as N	3.4	3.3	4.2	4.4	2.7	3.9	3.6	3.1	2.5	2.8	3.2	2.8	3.3	3.3	2.5	4.4	12	
	10000	cBOU3 mg/L	5.0	5.6	6.3	7.5	7.1	4.8	5.2	4.6	3.3	2.8	3.1	3.3	4.9	4.9	2.8	7.5	12	lataset
	000	mg/L	20	15	30	30	39	41	26	32	22	28	28	26	28	28	15	41	12	ened from c
	Filtered	rou mg/L	37	37	43	47	45	41	43	41	43	99	41	39	44	42	37	99	12	= Data Scre
		mgd	5.5	4.8	4.6	4.8	4.8	4.8	5.0	5.1	3.7	2.6	3.9	6.1	4.6	4.8	2.6	6.1	12	
		Date	8/20/2017	8/21/2017	8/22/2017	8/23/2017	8/24/2017	8/25/2017	8/26/2017	8/27/2017	8/28/2017	8/29/2017	8/30/2017	8/31/2017	Average	Median	Minimum	Maximum	Count	
		Day	-	2	е	4	5	9	7	8	6	10	11	12						
		1	Br	ov	vn	AND	C	al	dv	ve	II									

		Notes																	
	Нд		6.5	6.5	6.4	6.5	6.5	6.5	6.4	6.4	6.6	6.4	6.6	6.7	6.5	6.5	6.4	6.7	12
	Temp		21.5	21.0	21.0	21.0	21.0	20.9	20.6	21.0	21.8	21.0	21.5	21.4	21.1	21.0	20.6	21.8	12
	TSS	mg/L	16	16	19	21	19	18	16	16	21	19	20	19	18	19	16	21	12.0
	Total P	mg/L as P	0.88	96.0	0.95	0.96	0.98	0.88	0.84	0.84	0.93	1.01	1.09	1.04	6'0	1.0	0.8	1.1	12
Effluent	Nitrate/NOX	as N, mg/L	23.7	23.7	23.0	23.2	28.5	28.2	28.2	27.1	29.5	25.5	24.7	24.4	25.8	25.1	23.0	29.5	12
Plant	NH3	mg/L as N	<.056	0.15	0.19	<0.16	0.23	0.37	0.37	0.29	2.50	4.92	1.93	<0.16	1.2	0.4	0.2	4.9	6
	TKN	mg/L as N	2.3	2.9	3.8	3.9	3.4	3.7	3.4	3.4	5.9	8.4	5.6	3.7	4.2	3.7	2.3	8.4	12
	CBOD5	mg/L	4.37	4.41	5.55	6.12	5.30	4.82	4.80	4.60	5.75	4.90	4.56	5.14	5.0	4.9	4.4	6.1	12
	Flow	mgd													i0//\IC#	imun#	0.0	0.0	0
	Date		8/20/2017	8/21/2017	8/22/2017	8/23/2017	8/24/2017	8/25/2017	8/26/2017	8/27/2017	8/28/2017	8/29/2017	8/30/2017	8/31/2017	Average	Median	Minimum	Maximum	Count
		Day	-	2	ю	4	5	9	7	ω	6	6	1	12					

Wastewater Characterization and BioWin Calibration

	BC)	TVS	mg/L or %TS	83	84	83	84	84	85	85	84	85	84	83	83	84	84	12
	ludge (A	ST	mg/L or %TS	2.31	2.28	2.25	2.42	2.53	2.68	2.65	2.64	2.63	2.36	2.49	2.49	2.478	2.490	12
dge	rimary 3 S	Sludge Blanket	feet	6.0	4.0	5.0	5.0	3.0	4.5	2.5	2.5	4.0	1.0	0.5	2.5	3.4	3.5	12
fer Slu		Flow	mgd	0.029	0.029	0.033	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.026	0.022	0.0326	0.0360	12
nary Clari	(0	SVT	mg/L or %TS	82	82	82	80	81	80	82	78	79	81	80	80	08	80	12
Prii	ludge (HP	ST	mg/L or %TS	2.20	2.49	2.76	2.18	2.58	2.38	2.46	2.16	2.44	2.65	2.67	2.67	2.470	2.475	12
	mary 1/2 SI	Sludge Blanket	feet	1.0	2.3	1.3	1.5	1.3	1.5	2.0	0.5	1.8	2.8	1.5	1.8	1.6	1.5	12
	Pri	Flow	mgd	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.1008	0.1008	12
		Date		8/20/2017	8/21/2017	8/22/2017	8/23/2017	8/24/2017	8/25/2017	8/26/2017	8/27/2017	8/28/2017	8/29/2017	8/30/2017	8/31/2017	Average	Median	Count
			Day	F	2	ю	4	5	و	7	ω	ი	10	1	12			

													2							
			1 N	AS GBT Fe	ed	WA	S GBT	Cake					>	VAS GB	T Filtra	te				
		Date	Flow	LS	TVS	NO.	TS	TVS		TKN	NH3	Total D	P.04.P	CRODS	TSS	NSS	Filtered	Polymer Flow	Dilution	WAS GBT Washwater
	Day	200	gpm	%	%	gpm	%	%	mg/L	mg/L as N	mg/L as N	mg/L as P	mg/L as P	mg/L	mg/L	mg/L	mg/L	gpm	gpm	gpm
	-	8/20/2017	301	0.66	75.87	29.7	4.6	82	957	81	13	24	9		810	700	103	1.4	4.5	58.8
	2	8/21/2017	318	0.62	74.84	28.1	4.8	82	814	70	10	23	7	245	735	645	69	1.5	4.5	58.8
	e	8/22/2017	352	0.66	73.97	32.6	3.9	82	498	50	10	16	4	181	490	430	58	1.7	4.5	58.9
	4	8/23/2017	369	0.63	75.00	33.4	4.6	81	594	57	6	17	3	189	550	470	66	1.8	9.8	59.0
	5	8/24/2017	380	0.61	72.82	30.0	5.6	81	498	49	13	12	4	126	480	425	58	1.8	11.1	59.0
	9	8/25/2017	345	0.91	74.50	25.9	5.2	80	449	42	11	12	3	113	360	325	64	1.4	11.0	59.4
2-	7	8/26/2017	367	0.57	71.62	27.4	5	81	562	52	12	16	4	146	470	405	77	1.5	12.0	59.5
	œ	8/27/2017	375	0.55	71.10	26.4	5.5	80	462	47	9	13	4	160	510	450	54	1.5	11.9	59.5
100	6	8/28/2017	346	0.51	70.41	21.9	5.3	80	554	2	12	16	5	176	480	400	49	1.2	12.0	59.4
	10	8/29/2017	311	0.48	70.91	17.6	5.2	80	579	54	15	15	5	146	655	500	54	1.0	10.7	59.5
0	1	8/30/2017	298	0.47	69.66	15.2	5.4	81	776	99	13	19	7	234	705	645	56	0.9	10.6	59.5
a l	12	8/31/2017	296	0.50	69.37	16.0	5.2	80	739	70	13	22	7	236	725	640	52	1.0	10.6	59.5
d.		Average	338	0.597	72.506	25.345	5.0	80.917	624	57.5	11.3	17	5	177	581	503	63	1.382	9.439	59.237
		Median	345	0.588	72.220	26.873	5.2	81.110	571	53.7	12.2	16	4	176	530	460	58	1.442	10.656	59.408
		Count	12	12	12	12	12	12.000	12	12	12	13	12	4	12	12	12	12	12	12
				= Data Screene	d from datase t															
1			TSS Canture						rato											
	į	4	1	000-1471	NAT. OT	000.000	001.000		Vec.Tec	00	001/101	TUNIVES	01.0 VO	NUD. TUN						
	- G	8/20/2017	88.0	0.084	0 293	137	1 18	0.11	0.86	110	0.034	0 1 15	0.24	0.16						
	2	8/21/2017	88.3	0.086	0.325	1.26	1.11	0.08	0.88	06	0.035	0.108	0.31	0.14						
	ю	8/22/2017	93.2	0.100	0.314	1.16	1.02	0.12	0.88	60	0.036	0.116	0.25	0.20						
	4	8/23/2017	91.6	0.095	0.301	1.26	1.08	0.11	0.85	80	0.036	0.120	0.18	0.16						
	6	8/24/2017	92.1 06.2	0.098	0.245	1.1/	1.04	0.12	0.89	55 25	0.028	0.115	0.29	0.26						
	0 -	8/26/2017	01 7	0.00	0.318	1 30	1 20	0.14	0.86	5	0.040	0.127	0.24	0.23						
	8	8/27/2017	90.5	0.102	0.271	1.03	0.91	0.12	0.88	09	0.028	0.105	0.29	0.12						
	6	8/28/2017	90.1	0.097	0.292	1.39	1.15	0.09	0.83	80	0.039	0.134	0.32	0.23						
	10	8/29/2017	85.3	0.093	0.282	1.16	0.88	0.09	0.76	155	0.030	0.107	0.36	0.28						
	£	8/30/2017	83.5	0.085	0.293	1.20	1.10	0.07	0.91	60	0.030	0.102	0.34	0.20						
	12	8/31/2017	84.2	0.095	0.313	1.15	1.02	0.07	0.88	85	0.034	0.109	0.30	0.18						
		Average	89.6	0.093	0.295	1.24	1.08	0.10	0.87	78	0.034	0.116	0.28	0.201						
		Median	90.3	0.094	0.293	123	1.09	0.11	0.88	73	0.035	0.115	0.29	0.198						
		Count	12	12	12	72	12	12	12	21	12	12	12	12						

								Dig	esters										
				Digeste	r Feed			Digester					Di	gester (Dverflow	_			
	Date	Flow	TS	TVS	đ	PO4-P	⁼ erric Added	Methane	Flow	NH3	cop	TS	TVS	T otal P	P04-P	Hq	Filtered Mg	Temp	Total Alk
Day		mgd	%	%	mg/L	mg/L	gpd	SCFH	pgm	mg/L as N	mg/L	%	%	mg/L as P	mg/L as P		mg/L	v	mg/L as CaCO3
-	8/20/2017	0.20	2.87	81	610	321	255	16270	_		12400	1.68	65.4	800	570	7.5	31	32	5039
2	8/21/2017	0.20	2.90	82	734	341	255	16756			12000	1.61	64.9	650	491	7.57	30	32	5098
ю	8/22/2017	0.21	3.24	85	678	305	255	17994			13300	1.41	74.9	588	467	7.5	30	8	4920
4	8/23/2017	0.21	3.21	82	662	324	255	17656			13100	1.63	64.6	507	458	7.5	29	31	4820
5	8/24/2017	0.21	3.19	82	663	305	255	17191			13500	1.68	64.7	596	561	7.49	32	33	4750
9	8/25/2017	0.20	3.16	82	687	294	255	17350			13700	1.66	65.6	632	458	7.45	27	क्ष	4650
7	8/26/2017	0.20	3.20	82	707	302	255	17230			13300	1.63	66.9	614	488	7.43	33	35	4470
8	8/27/2017	0.20	3.06	81	656	347	255	16214			14300	1.68	65.6	569	491	7.54	27	8	4550
6	8/28/2017	0.19	2.48	78	537	278	255	15133			13300	1.67	64.7	611	528	7.47	31	35	4560
10	8/29/2017	0.18	2.59	78	492	279	255	15481			12600	1.69	63.8	623	511	7.47	30	32	4600
1	8/30/2017	0.16	3.22	79	675	350	255	15029			13700	1.68	64.7	699	391	7.49	34	28	4550
12	8/31/2017	0.16	2.47	79	516	278	255	15154			12400	1.63	64.7	606	485	7.53	33	30	4490
	Average	0.193	2.966	80.9	634.7	310.3	255	16454.719	i0//IC#	i0//IC#	13133	1.64	99	622	492	7	30	32	4708
	Median	0.199	3.110	81.5	662.5	305.0	255	16512.938	iWNN#	iWNN#	13300	1.66	65	613	490	7	90	ß	4625
	Count	12	12	12	12	12	12	12	0	0	12	12	12	12	12	12	12	12	12

Wastewater Characterization and BioWin Calibration

						Dige	sted Slue	dge Gra	vity Be	It Thick	eners									
			Digest	ed GBT	Feed		Digeste	∋d GBT	Cake					igestec	I GBT F	iltrate				
											Filtered							Polymer	Dilution D	igested GBT
Ne ^C	Date	Flow	COD	Total P	TS %	TVS %	Flow	TS %	TVS %		COD	TKN mc/l as N	NH3 mo/Las N	Total P	PO4-P	TSS mu/l	VSS	Flow	Water	Washwater
- -	2100/00/8	001	16000	503	168	2	3F.1	2 4	2 79	ER70		807	73.4	99	1	1345	775	3 800	5 05 2	36.617
		8		8	8	5	- 04		5		270	700	5	8					100-0	
7	8/21/2017	111	11100	619	1.57	8	29.9	6.9	65	1390	684	781	689	65	52	910	640	3.997	5.011	46.647
ю	8/22/2017	108	12400	575	1.44	70	28.0	7.4	8	1630	658	744	633	88	78	1325	006	3.318	5.113	46.671
4	8/23/2017	138	12200	611	1.58	65	32.0	7.3	65	2200	686	834	758	60	55	780	550	5.581	4.849	46.665
5	8/24/2017	105	13500	653	1.60	65	23.7	7.6	65	1920	878	805	695	54	43	770	590	4.282	4.416	46.669
9	8/25/2017	110	12000	625	1.61	65	26.6	7.7	65	1500	739	831	723	64	47	790	530	4.023	4.626	46.900
7	8/26/2017	116	13100	628	1.59	65	30.3	7	67	1780	684	806	707	79	51	730	510	3.818	4.964	47.670
8	8/27/2017	101	14100	606	3.05	81.44	25.8	6.9	65	1580	675	739	637	79	56	470	365	3.012	5.009	47.589
6	8/28/2017	129	11800	647	1.65	65	33.1	6.8	65	1840	639	820	661	68	53	800	520	4.384	4.867	47.464
10	8/29/2017	95	13100	569	1.61	99	21.8	7.4	67	1560	643	748	639	84	82	1300	830	3.101	4.978	47.571
7	8/30/2017	68	11800	613	1.61	64	19.7	7.9	99	1560	641	763	640	116	141	1680	920	2.701	4.998	47.672
12	8/31/2017	96	12600	554	1.58	65	22.3	8.1	68	1600	673	729	651	140	84	1440	830	2.842	4.946	47.759
	Average	109	12808	809	1.593	65	26.541	7.4	65	1687	686	783.5	680.6	80	67	1028	663	3.738	4.902	47.158
	Median	108	12500	612	1.600	65	26.199	7.4	65	1600	674	791.5	675.0	73	55	855	615	3.809	4.971	47.182
	Count	12	12	12	11	11	12	12	12.000	11	12	12	12	12	11	12	12	12	12	12
			= Data Scree	ned from dat	taset															
	CALCULATIONS												ſ							
		TSS Capture						Filtrate		-	-	-								
Day	Date	Percent	TKN:COD	TP: TKN	COD:VSS	COD:TSS	scob:cob	VSS:TSS	ISS	TP:VSS	TKN:VSS	PO4-P:TP	NH3:TKN							
-	8/20/2017	93.8	0.120	0.082	8.61	4.96	0.09	0.58	570	0.085	1.035		0.92							
z	1102/12/8	93.4	796.0	0.083	71.7	50°.L	0.49	0.70	2/0	0.102	1.220	18.0	0.88							
04	8/23/2017	93.5	0.379	0.071	4.00	2.82	0.31	0.71	230	0.108	1.516	0.92	0.91							
5	8/24/2017	93.2	0.419	0.067	3.25	2.49	0.46	0.77	180	0.092	1.364	0.80	0.86							
9	8/25/2017	93.1	0.554	0.076	2.83	1.90	0.49	0.67	260	0.120	1.568	0.74	0.87							
7	8/26/2017	93.3	0.453	0.097	3.49	2.44	0.38	0.70	220	0.154	1.580	0.65	0.88							
∞	8/27/2017	97.6	0.468	0.106	4.33	3.36	0.43	0.78	105	0.215	2.025	0.72	0.86							
6	8/28/2017	93.9	0.446	0.082	3.54	2.30	0.35	0.65	280	0.130	1.577	0.78	0.81							
9	8/29/2017	93.5	0.479	0.112	1.88	1.20	0.41	0.64	470	0.101	0.901	0.98	0.85							
5	8/30/2017	93.1	0.489	0.152	1.70	0.93	0.41	0.55	760	0.126	0.829	1.22	0.84							
12	8/31/2017	93.4	0.456	0.192	1.93	1.11	0.42	0.58	610	0.169	0.878	0.60	0.89							
	Average	93.7	0.440	0.103	3.3	2.2	0.39	0.67	365	0.125	1.277	0.83	0.868							
	Median	93.4	0.456	0.090	3.0	2.1	0.41	0.68	275	0.114	1.292	0.80	0.867							
	Count	12	12	12	12	12	12	12	12	12	12	1	12							

		Oxygen Flow	MCFH	10.92				11.39				10.74				9.63				8.06				6.95				10.19		
		NO2-N		0.04	0.04	0.03		0.55	0.42	0.30		0.04	0.04	0.05		0.70	0.62	0.51		0.13	0.25	0.22		0.25	0.53	0.59		0.19	0.34	000
		NO3-N		0.16	0.16	0.09		1.00	0.92	0.72		0.03	0.07	0.03		0.92	0.81	0.53		0.05	0.12	0.06		0.06	0.59	0.54		0.11	0.38	Č
rofiles		P04-P		<:033	<:033	<:033		0.37	0.19	60'0		<:033	<:033	<.033		1.24	0.92	29.0		0.19	0.04	<.033		1.45	1.05	96.0		0.81	0.56	
Basin P		NOX-N		0.20	0.20	0.12		1.55	1.34	1.02		0.07	0.11	0.08		1.62	1.43	1.04		0.18	0.37	0.28		0.31	1.12	1.13		0.26	0.75	
eration		NH3-N		27.10	25.80	26.80		30.10	29.70	28.70		29.40	28.70	29.40		33.30	33.10	32.20		28.00	25.90	25.90		30.80	29.90	29.50		29.75	29.20	
stage A	Filtered	COD		64	54	52		14	09	52		52	52	52		68	09	54		54	45	45		75	60	56		66.00	57.00	50.00
0 1st S		TSS		1180	1160	1180		1080	1140	1100		1220	1300	1320		006	820	920		1000	1100	1100		260	740	740		1040.00	1120.00	1100 00
НР		Flow	MGD	5.2	5.2	5.2		11.55	11.55	11.55		5.23	5.23	5.23		14.65	14.65	14.65		9.04	9.04	9.04		15.46	15.46	15.46	lues	10.30	10.30	10.30
		ltem	Profile # 1	Cell 1	Cell 2	Cell 3	Profile # 2	Cell 1	Cell 2	Cell 3	Profile # 3	Cell 1	Cell 2	Cell 3	Profile # 4	Cell 1	Cell 2	Cell 3	Profile # 5	Cell 1	Cell 2	Cell 3	Profile # 6	Cell 1	Cell 2	Cell 3	Median Va	Cell 1	Cell 2	
		Time	8:00 AM				1:00 PM				8:00 AM				1:00 PM				8:00 AM				1:00 PM							
		Date	8/27/2017				8/27/2017				8/28/2017				8/28/2017				8/29/2017				8/29/2017							

			ОДН	2nd Sta	age Aera	ation Ba	Isin Pro	files			
					Filtered						
Date	Time		Flow	TSS	сор	NH3-N	NOX-N	PO4-P	NO3-N	NO2-N	Oxygen Flow
8/27/2017	8:00 AM	Profile # 1	MGD								MCFH
		Cell 1	5.2	4100	56	1.37	31.40	0.13	31.40	0.00	11.6
		Cell 2	5.2	4140	47	0.16	34.90	0.14	35.10	-0.20	
		Cell 3	5.2	4160	49	0.23	36.30	0.27	36.40	-0.10	
8/27/2017	1:00 PM	Profile # 2									
		Cell 1	11.55	3540	45	7.37	24.70	0.23	24.60	0.10	11.4
		Cell 2	11.55	3600	47	1.23	32.20	0.15	32.10	0.10	
		Cell 3	11.55	3580	45	0.23	28.50	0.19	28.50	0.00	
8/28/2017	8:00 AM	Profile # 3									
		Cell 1	5.23	3880	41	2.09	33.10	0.09	33.00	0.10	11.6
		Cell 2	5.23	3900	41	0.16	37.00	0.12	37.00	0.00	
		Cell 3	5.23	4060	45	0.16	38.60	0.16	38.60	0.00	
8/28/2017	1:00 PM	Profile # 4									
		Cell 1	14.65	3380	56	10.30	22.70	0.15	22.60	0.10	12.3
		Cell 2	14.65	3260	39	5.06	29.30	0.12	29.20	0.10	
		Cell 3	14.65	3400	37	1.42	34.40	0.14	34.30	0.10	
8/29/2017	8:00 AM	Profile # 5									
		Cell 1	9.04	3660	39	9.33	23.30	0.26	23.20	0.10	12.1
		Cell 2	9.04	3820	45	4.15	31.10	0.34	31.00	0.10	
		Cell 3	9.04	3880	45	0.65	36.60	0.32	36.50	0.10	
8/29/2017	1:00 PM	Profile # 6									
		Cell 1	15.46	3320	49	13.20	18.60	0.35	18.50	0.10	13.5
		Cell 2	15.46	3320	45	8.33	22.50	0.31	22.40	0.10	
		Cell 3	15.46	3180	47	4.92	27.00	0.32	26.90	0.1	
		Median Values									
		Cell 1	10.30	3600.00	47.00	8.35	24.00	0.19	23.90	0.10	11.88
		Cell 2	10.30	3710.00	45.00	2.69	31.65	0.15	31.55	0.10	
		Cell 3	10.30	3730.00	45.00	0.44	35.35	0.23	35.35	0.05	

Wastewater Characterization and BioWin Calibration

				ABO	C Aerat	ion Bas	in Profi	les				
					Filtered							
Date	Time		Flow	TSS	COD	NH3-N	NOx-N	PO4-P	NO3-N	NO2-N	Airflow	D
8/27/2017	8:00 AM	Profile # 1	MGD									
		Anaerobic	5.26	2760	79	18.2	0.05	22.9	0.05	0.00	NA	N/
		Swing	5.26	2700	49	13.5	3.67	2.85	3.17	0.50	1506	N/
		Grid 2	5.26	2820	45	0.37	18.10	<.033	16.90	1.20	1021	2.5
		Grid 3	5.26	2720	43	0.23	18.00	<.033	16.70	1.30	625	1.7
		Grid 4	5.26	2800	41	0.37	17.80	<.033	16.80	1.00	476	1.7
8/27/2017	1:00 PM	Profile # 2										
		Anaerobic	5.38	2840	88	18.7	0.1	21.3	0.07	0.03	NA	N/
		Anoxic	5.38	2900	52	13.9	4.11	1.92	3.78	0.33	1426	N/
		Grid 2	5.38	2740	47	0.23	18.20	<.033	18.00	0.20	957	2.2
		Grid 3	5.38	2660	47	0.23	18.00	<.033	17.80	0.20	585	1.4
		Grid 4	5.38	2660	45	0.16	18.50	<.033	18.50	0.00	451	1.7
8/28/2017	8:00 AM	Profile # 3										
		Anaerobic	5.31	2700	64	19.2	0.11	13.6	0.07	0.04	NA	N/
		Anoxic	5.31	2580	52	12.5	5.88	0.19	5.31	0.57	1359	N/
		Grid 2	5.31	2680	47	0.28	18.60	<.033	18.40	0.20	899	2.5
		Grid 3	5.31	2780	47	0.37	18.70	<.033	18.50	0.20	547	1.8
		Grid 4	5.31	2760	39	0.16	18.70	<.033	18.70	0.00	415	2.0
8/28/2017	1:00 PM	Profile # 4										
		Anaerobic	2.73	3120	60	18.9	0.05	7.95	0.05	0.00	NA	N/
		Anoxic	2.73	2740	39	13.5	6.13	<.033	5.75	0.38	915	N/
		Grid 2	2.73	2700	30	0.74	19.80	<.033	19.50	0.30	596	2.4
		Grid 3	2.73	2700	32	0.37	19.90	<.033	13.90	6.00	458	0.4
		Grid 4	2.73	2780	34	0.17	20.00	<.033	20.00	0.00	360	1.6
8/29/2017	8:00 AM	Profile # 5										
		Anaerobic	2.5	2800	77	17	0.05	16.2	0.05	0.00	NA	N/
		Anoxic	2.5	2800	54	11.6	5.01	0.093	4.71	0.30	780	N/
		Grid 2	2.5	2880	43	0.45	19.80	<.033	19.50	0.30	506	1.4
		Grid 3	2.5	2880	41	0.16	20.30	<.033	20.20	0.10	328	0.5
		Grid 4	2.5	2840	34	0.16	20.60	<.033	20.60	0.00	245	0.5
8/29/2017	1:00 PM	Profile # 6										
		Anaerobic	2.54	2700	56	18.1	0.05	16.2	0.05	0.00	NA	N/
		Anoxic	2.54	2620	39	12.6	5.17	0.08	5.02	0.15	647	N/
		Grid 2	2.54	2560	43	0.37	19.60	<.033	19.40	0.20	437	1.4
		Grid 3	2.54	2740	34	0.23	20.10	<.033	20.00	0.10	403	1.0
		Grid 4	2.54	2660	30	0.16	20.80	<.033	20.80	0.00	384	2.1
		Median Values										
		Anaerobic	4.00	2780.00	70.50	18.45	0.05	16.20	0.05		#NUM!	#NL
		Swing - Aerated	4.00	2720.00	50.50	13.05	5.09	0.19	4.87		1137.01	#NL
		Grid 2	4.00	2720.00	44.00	0.37	19.10	0.03	18.90	0.25	747.36	2.3
		Grid 3	4.00	2730.00	42.00	0.23	19.30	0.03	18.15	0.20	502.23	1.2
		Grid 4	4.00	2770.00	36.50	0.16	19.35	0.03	19.35	0.00	399.82	1.7

										int VE	20								
										- Ineur - VF	AS					Dronrionio			ſ
ţ	L mit			COD,	Filtered	ffcoD, /	Acetic Acid	Propionic	Is obut yric	Butyric Acid	Methylbutyri	Isovaleric	Valeric Acid	VFAs as	Volatile	VFAas	Effluent	i I L	į
Date	lme	Sample	Flow, mgd	mg/L	CUD, mg/L	ng/I	mdd	Acid ppm	Acid ppm	mqq	c Acid ppm	Acid ppm	mqq	mg CUU/L	Acids, mg/L	000	∎COD	FDS	гас
RI27/2017	10-00 AM	A Sample 1	13.1	4/4 823	547	413	34.6	7 4	<1	<1	- 1	۰1 ۲	< 1	48	109	11	28	0.47	0 12
8/27/2017	12:30 PM	1 Sample 2	16.6	682 682	293	180	31.4	4	, t v	, <u>,</u> ,	, r	, <u>,</u> ,	, - , - ,	4 64	103	9	28	0.22	0.26
8/27/2017	3:00 PM	Sample 3	16.2	665	284	163	24.6	3.1	</td <td>- 1</td> <td>< + 1</td> <td>× ۲</td> <td>< 1 ></td> <td>31</td> <td>116</td> <td>5</td> <td>28</td> <td>0.20</td> <td>0.23</td>	- 1	< + 1	× ۲	< 1 >	31	116	5	28	0.20	0.23
		Event 2		511	274	167													
8/28/2017	10:00 AV	A Sample 1	16.5	586	248	152	20.4	2.5	-1	-1	- 1	۰ ۲	<1	26	77	4	26	0.22	0.20
8/28/2017	12:30 PN	A Sample 2	17.1	844	380	261	30.7	3.6	,	× +	~	, ,	< + +	8	124	5	26	0.28	0.16
8/28/201;	3:00 PM	I Sample 3	16.2	688	366	222	31.1	3.8	۰ ۲	v v	۰ ۲	v t	۰ ۲	39	115	9	26	0.28	0.20
		Event 3		630	306	195													
8/29/201;	10:00 AV	A Sample 1	17.9	930	430	304	37.3	6.2	< 1	۰ ۲	< +	۰ ۲	<1	49	134	6	32	0.29	0.18
8/29/201,	12:30 PN	A Sample 2	17.5	906	429	280	38.8	7.8	۰ ۲	v t	v t	Ý	۰ ۲	53	131	12	32	0.27	0.21
8/29/201;	3:00 PM	I Sample 3	17.2	793	408	274	37.2	6.1	۰ ۲	~ -	v v	۰ ۲	<	49	119	თ I	32	0.31	0.20
		Average	16.5	117	352	230	31.8	4.4						4	114	~ 0		0.28	0.20
		Median	16.6	685	336	208.5	31.4	4						8 8	116	9		0.28	0.20
		Maximum	17.9	4/4 930	547	413	38.8	6.7 8.7						8 13	134	4 6		0.47	0.26
					,												1		
								Prin	1/2 E	Effluent -	VFAs								
																Proprionic			
	i	-	i		scob,	ffcob, /	Acetic acid,	Propionic	N Buteric	Iso Buteric	N Valeric	Iso Valeric	Sec Valeric	VFAs as	VFA	VFAas	Effluent	i	ı
Date	Time	Sample	Flow, mgd	COD,mg/L	mg/L	mg/l	mg/L	Acid, mg/L	Acid, mg/L	Acid, mg/L	Acid, mg/L	Acid, mg/L	Acid, mg/L	mg COD/L	Increase	COD	ffcod	Fbs	Fac
1,00,00,0		Event 1	L				, cr	0.00								2			
R/28/2011	10.00 AN	A Sample 1	0.0				73.1	20.0 27.8		0. T	~ ~			112	78	31		-	
R/28/2011	3-00 DM	Sampa 3	11 8				10/	10.0		0 V	, ,			209	38	5.4		4	
107/07/0	M 1000	Event 2	<u>.</u>				P	0.0	,	,	,	,	- ,	3	8	2			
8/28/2017	10:00 AM	A Sample 1	12.2				38.8	7.1	<1 1	× ۲	<1	< 1	۰ ۲	52	27	11			
8/28/2017	12:30 PN	1 Sample 2	15.5				45.2	8	<1	< 1	< 1	<1	<1	60	22	12			
8/28/2017	3:00 PM	Sample 3	14.5				45.1	7.1	< 1	<1	< 1	<1	< 1	59	20	11			
		Event 3																	
8/28/201	10:00 AV	A Sample 1	16.2				57.3	14.7	۲ ۲ ۲	1.1	~ 7	v V	, , ,	85	36	52			
107/87/8	NH 02 20	A Sample 2	15.8				54.9	12.8	, v	v v	v	, v	- · ·	8	30	61			
0/20/2011	3:00 PM	Average	10.0 2 E				01:4	13.0	1	1 37		1		8 8	00 00	<u></u>			
		Median	14.5				57.3	12.6	•	15	, .	, ,	•	8 8	36	a é			
		Minimum	8.5			-	38.8	7.1	<1	1.1	••	, 1 ×	۲ ۰	52	20	1	0		
		Maximum	16.2				73.1	22.8	<1	1.5	•1	<1	<1	117	78	8	0		
								Pri	mary 3 Ei	ffluent - /	VFAs								
							cotio ocid	Conionia	N Dutorio	co Dutorio	NI Violorio	le o Velorio	Soc Malaria	VEAC OC	1/0	Proprionic	Efficient		
Date	Time	Sample	Flow, mgd	COD, mg/L	mg/L	, mg/l	mg/L	Acid, mg/L	Acid, mg/L	Acid, mg/L	Acid, mg/L	Acid, mg/L	Acid, mg/L	mg COD/L	Increase	COD	ffcod	Fbs	Fac
		Event 1																	
8/29/2017	10:00 AV	A Sample 1	5.5				74.6	21.3	-1	2.8	ہ ۲	۰ ۲	< 1	117	69	32			
8/29/201;	12:30 PN	A Sample 2	5.4				69.5	14.7	۰ ۲	1.3	^	~	۰ ۲	66	59	52			
8/29/201	3:00 PM	I Sample 3	5.2				36.1	2	~ +	v v	v t	< -	< 1	46	15	œ			
8/29/2017	10:00 AM	A Sample 1	5.2				36	5.7	<1	<1	< 1	<1	<1	47	21	6			
8/29/2017	12:30 PM	1 Sample 2	2.4				44.8	7.3	<1	 1 	< ۲	</th <th>< ۲</th> <th>59</th> <th>21</th> <th>1</th> <th></th> <th></th> <th></th>	< ۲	59	21	1			
8/29/2017	. 3:00 PM	I Sample 3	2.5				49.3	6.6	< 1	< 1 </th <th><1</th> <th>< 1</th> <th>< 1</th> <th>63</th> <th>24</th> <th>10</th> <th></th> <th></th> <th></th>	<1	< 1	< 1	63	24	10			
		Event 3																	
8/29/2017	10:00 AV	A Sample 1	2.5				76.2	20.2	1.2	4.3	۰ ۲	1.3	1.2	127	78	31			
8/29/201	12:30 PN	A Sample 2	2.4				64.7	11.7		- 1	v i	~ ·	- -	81	35	99;			
8/23/2011	3:UU PINI	Average	0.7 2				1.7C	313	13	2 3E		-	-	ດ ເ	07 07	14			
		Madian	3.C				111	~	10	2.05		2 6	12	35	36	14			
		Minimum	2.4				36.0	3.k	12	1	1100	13	12	5 46	15	± ∞	1404		
	_	Maximum	55				76.2	21.3	12	43	, o	13	12	127	78	32	, o		
		Maninali	, ;				4.0	2.14	- !	- f	-	?	4	14	2	4	>		

Dic	Irnal E	vent 1					Date	8/27/17 to 8	/28/17									
			WRP I	nfluent				Prir	nary 1/2	Effluen				٩	rimary 3	Effluen	t	
low C	õ	ao	TKN	τP	TSS	VSS	Flow	сор	TKN	ТР	TSS	VSS	Flow	сор	TKN	đ	TSS	VSS
m	13	g/L	mg/L as N	mg/L	mg/L	mg/L	mgd	mg/L	mg/L as N	mg/L	mg/L	mg/L	mgd	mg/L	mg/L as N	mg/L	mg/L	mg/L
.84 6	9	67	36.1	6.27	158	150	5.83	338	39.8		30	28	5.29	440	44.7	6.15	62	60
2.76 6	œ	78	46.6	7.93	226	204	8.28	344	41.2	2.72	22	22	5.29	481	44.7	6.1	80	80
5.42 7		780	53.7	11.03	312	282	11.03	366	41.9	3.53	20	20	5.31	524	51.7	7.27	94	86
5.14		618	47.8	13.63	324	270	11.69	338	44.7	4.69	48	40	5.28	432	50.3	7.96	106	96
5.66		643	43.1	7.22	220	200	11.25	291	44.7	4.49	34	30	5.29	391	47.5	7.95	96	82
4.92		620	37.5	5.8	216	196	10.49	304	41.9	3.5	28	26	5.29	417	44.7	6.4	68	58
5.21		620	37.5	5.17	210	204	10.77	316	41.9	3.1	32	24	5.30	434	44.7	5.58	72	64
5.57		601	36.1	5.06	206	196	11.14						5.31	421	41.9	5.16	66	62
3.85		673	36.7	5.2	208	196	9.44						5.29	428	41.9	5.15	64	60
1.07		543	35	5.0	118	114	6.66						5.29	440	45	5.2	58	56
.42		588	29.1	5.0	194	174	5.05						5.26	391	43.3	5.27	50	48
.05		595	29.4	5.09	196	176	4.69			1.84			5.33	359	44.7	6.01	50	48
3.2		636	39.1	6:9	216	197	8.9	328	42.3	3.4	30.6	27.1	5.3	430	45.4	6.2	72.2	66.7
4.4		620	37.1	5.5	209	196	10.0	338	41.9	3.5	30.0	26.0	5.3	430	44.7	6.1	67.0	61.0
12		12	12	12	12	12	12	7	7	7	7	7	12	12	12	12	12	12
		639	40	7.1	222	203								430	45.4	6.2	72	67
3.2		474	36	6.2	156	142	9.5						5.3	338	42	5.7	100	94
%0		35%	11%	14%	43%	43%	-7%						%0	27%	%2	%6	-28%	-29%
		ĺ	/alues estim	ated based u	ipon compos	ite influent r	atios for the	day of testin	0									
	1		WRP I	nfluent				Prir	nary 1/2	Effluen				Ā	rimary 3	Effluen	t	
. TSS	Ι¥	N:COD	TP:TKN	COD:TP	VSS:TSS	TP:TSS	COD:TSS	TKN:COD	TP:TKN	COD:TP	VSS:TSS		COD:TSS1	TKN:COD	TP:TKN	COD:TP	/SS:TSS	
.22		0.05	0.17	106	0.95	0.040	12.07	0.12	0.00	#DIV/0i	0.93		7.33	0.10	0.14	72	0.97	
00.		0.07	0.17	85	06.0	0.035	15.64	0.12	0.07	126	1.00		6.01	0.09	0.14	79	1.00	
.50		0.07	0.21	71	06.0	0.035	18.30	0.11	0.08	104	1.00		6.09	0.10	0.14	72	0.91	
6.0		0.08	0.29	45	0.83	0.042	8.45	0.13	0.10	12 21	0.83		4.50	0.12	0.16	5 24	0.91	
70		0.06	0.15	107	1000	7000	11.60	0.10		20	0000		7.10	11	0.14	212	0.00	
.95		0.06	0.13	120	16.0	0.025	13.17	0.13	0.07	0/ 102	0.75		6.78	0.10	0.12	78	0.89	
.92		0.06	0.14	119	0.95	0.025							6.79	0.10	0.12	82	0.94	
.24		0.05	0.14	129	0.94	0.025							7.13	0.10	0.12	83	0.94	
.60	Ц	0.07	0.14	109	0.97	0.042							7.86	0.10	0.12	85	0.97	
													8.15	0.11	0.12	74	96.0	
													7.48	0.12	0.13	60	0.96	
3.1		0.06	0.17	98	0.92	0.033	12.7	0.13	0.07	#DIV/0i	6.0		6.7	0.11	0.14	71	6.0	
2.9		90.0	0.16	107	0.93	0.034	12.1	0.13	0.08	#DIV/0	6.0		7.0	0.10	0.14	13	6.0	
2	1	10	0L	2	D	01	`	_	_	9	,		ZL	ZL	ZL	ZL	ZL	
.78		0.01	0.05	26	0.04	0.01												

		-	5		,					5	5				-	- 1		-
	VSS	11 11	10	10	10	10	6	13	12	11	13	12	14	11.2	11.0	12	0	
	TSS	12 12	12	10	÷	12	14	14	14	13	15	14	17	13.0	13.2	12	0	
luent	PO4-P	0.034	0.034	<.033	0.033	0.035	0.035	0.037	0.035	0.034	0.038	0.035	0.033	0.0	0.0	11	0	
BC) Eff	NO3-N	IIYL as I												i0//IC#	iWNN#	0	0	
al 5 (Al	N-XON	15.8	15.9	16.2	16.2	16.3	16.7	18.2	18.3	18.2	18	17.9	17.8	17.1	17.3	12	0	
Fin	NH3-N	< 0.16	< 0.16	0.23	0.37	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	0.23	0.3	0.2	3	0	
	COD COD	54	54	58	56	49	49	56	66	49	49	47	47	53	52	12	0	
	Flow	n R												i0//IC#	iWNN#	0		
	VSS	50 R	17	17	16	23	16	14	12	18	15	16	16	16.4	15.8	12	0	
	TSS	26	23	22	21	28	25	24	21	29	26	26	29	24.9	25.4	12	0	
	PO4-P	99.0	0.608	0.635	0.607	0.658	0.7	0.63	0.603	0.64	0.6	0.692	0.652	9.0	9.0	12	0	
Effluent	NO3-N													10//NC#	iWNN#	0	0	
al 1-4 E	N-XON	34.1	34.2	34.5	34.2	34.1	33.5	33.1	32.9	32.5	33	33	33.6	33.6	33.6	12	0	
Fin	NH3-N	0.51	0.8	0.51	0.37	0.37	0.9	1.36	1.36	1.51	2	1.93	1.51	1.1	1.2	12	0	
	COD	- 69	64	66	62	81	64	58	56	60	64	62	62	64	63	12	0	
	Flow	nfill																
	VSS mo/l	11 9 1	7	42	114	114	74	38	62	40				57.0	42.0	6	0	
	TSS	22	8	44	124	126	80	42	80	68	22	14	16	53.8	43.0	12	0	
Ţ	PO4-P	0.265	0.253	0.415	1.17	0.93	0.6	0.35	0.555	0.453	0.3	0.27	0.27	0.5	0.4	12	0.0	
e Effluen	NO3-N		\$															
rmediate	N-XON	< 0.05	< 0.05	< 0.05	< 0.05	0.2	1.1	1.32	0.6	0.26	0	0.12	0.09	0.5	0.2	8	0	
Inte	NH3-N	25.9	26.6	27.3	27.3	29.4	28.7	28	28.7	28.7	28	28.7	28	27.9	28.0	12	0	
	COD .	75	60	90	274	229	158	94	156	143	69	75	66	124	92	12	0	
	Flow	na																

Diurnal Event 2	Diurnal Event 2	Event 2						Date	8/28/17 to 8	(/29/17									
WRP Influent	WRP Influent	WRP Influent	WRP Influent	nfluent					Pri	mary 1/2	Effluen	Ŧ			ē	rimary 3	3 Effluer	Ŧ	
Flow COD TKN TP TSS Time mgd mg/L mg/L as N mg/L mg/L	Flow COD TKN TP TSS mgd mg/L mg/Las N mg/L mg/L	COD TKN TP TSS mg/L mg/L as N mg/L	TKN TP TS mg/L as N mg/L mg/L	TP TSS mg/L	TSS mg/L		VSS mg/L	Flow mgd	COD mg/L	TKN mg/L as N	mg/L	TSS mg/L	VSS mg/L	Flow	coD mg/L	TKN mg/L as N	TP mg/L	TSS mg/L	VSS mg/L
7:00 12.78 485 41.7 4.65 178	12.78 485 41.7 4.65 178	485 41.7 4.65 178	41.7 4.65 178	4.65 178	178		164	8.36	235	43.3	1.59	32	32	5.31	282	44.2	5.43	42	36
9:00 16.66 513 43.1 5.87 300	16.66 513 43.1 5.87 300	513 43.1 5.87 300	43.1 5.87 300	5.87 300	300		266	12.27	240	43.3	2.02	36	36	5.28	323	45.1	4.96	52	48
11:00 17.35 776 50.1 8.68 108	17.35 776 50.1 8.68 108	776 50.1 8.68 108	50.1 8.68 108	8.68 108	108		100	14.74	306	47.5	3.55	48	46	3.47	372	47.1	5.87	70	64
13:00 16.87 729 48.7 9.48 330	16.87 729 48.7 9.48 330	729 48.7 9.48 330	48.7 9.48 330	9.48 330	330		284	15.19	351	47.5	5.6	68	64	2.49	507	49.4	7.89	72	64
15:00 16.21 748 46.1 7.04 282	16.21 748 46.1 7.04 282	748 46.1 7.04 282	46.1 7.04 282	7.04 282	282		252	14.83	338	48.9	5.68	60	52	2.20	406	49.1	8.6	74	66
17:00 15.61 821 43.3 5.7 282	15.61 821 43.3 5.7 282	821 43.3 5.7 282	43.3 5.7 282	5.7 282	282		252	14.44	410	50.3	5.2	62	54	2.00	428	48.8	7.5	74	66
19:00 15.72 682 39.1 4.77 224	15.72 682 39.1 4.77 224	682 39.1 4.77 224	39.1 4.77 224	4.77 224	224		204	14.11	425	47.5	4.84	52	44	2.41	474	51.4	6.76	72	70
21:00 16.21 850 39.1 5.27 254	16.21 850 39.1 5.27 254	850 39.1 5.27 254	39.1 5.27 254	5.27 254	254		230	14.52	404	44.7	4.15	52	52	2.48	451	47.4	6.23	68	60
23:00 14.83 746 39.1 5.1 278	14.83 746 39.1 5.1 278	746 39.1 5.1 278	39.1 5.1 278	5.1 278	278	1	250	13.17	402	41.9	4.25	60	56	2.50	460	44.7	5.95	72	70
1:00 11.97 692 36 3.8 84	11.97 692 36 3.8 84	692 36 3.8 84	36 3.8 84	3.8 84	84	-1	80	10.27	387	42	3.6	46	42	2.50	485	45	5.6	82	76
3:00 10.10 571 34.9 3.61 186	10.10 571 34.9 3.61 186	571 34.9 3.61 186	34.9 3.61 186	3.61 186	186		170	8.41	366	41.4	3.04	46	46	2.51	419	44.5	5.06	99	64
5:00 9.83 466 27.9 3.73 120	9.83 466 27.9 3.73 120	466 27.9 3.73 120	27.9 3.73 120	3.73 120	120		106	8.15	344	40.3	2.79	46	46	2.49	408	49.9	5.26	52	52
14.5 673 40.8 5.6 218.8	14.5 673 40.8 5.6 218.8	673 40.8 5.6 218.8	40.8 5.6 218.8	5.6 218.8	218.8	-	196.5	12.4	351	44.9	3.9	50.7	47.5	3.0	418	47.2	6.3	66.3	61.3
15.7 711 40.4 5.2 239.0	15.7 711 40.4 5.2 239.0	711 40.4 5.2 239.0	40.4 5.2 239.0	5.2 239.0	239.0	-	217.0	13.6	359	44.0	3.9	50.0	46.0	2.5	424	47.3	5.9	71.0	64.0
12 12 12 12 12 12	12 12 12 12 12	12 12 12 12	12 12 12	12 12	12	-	12	12	12	12	12	12	12	12	12	12	12	12	12
rerage 687 42 5.9 227	687 42 5.9 227	687 42 5.9 227	42 5.9 227	5.9 227	227		203		355	45	4.1	52	49		398	47	6.0	63	58
Data 14.2 511 40 6.8 187	14.2 511 40 6.8 187	511 40 6.8 187	40 6.8 187	6.8 187	187		169	11.3	299	45	3.8	56	51	3.8	295	45	5.6	62	59
2% 34% 3% -13% 21%	2% 34% 3% -13% 21%	34% 3% -13% 21%	3% -13% 21%	-13% 21%	21%		20%	6%	19%	2%	8%	-7%	-5%	-22%	35%	5%	7%	2%	-1%
WRP Influent	WRP Influent	WRP Influent	WRP Influent	nfluent					Pri	mary 1/2	Effluen	t			P	rimary 3	3 Effluer	it .	
Time COD:TSS TKN:COD TP:TKN COD:TP VSS:TS	COD:TSS TKN:COD TP:TKN COD:TP VSS:TS	TKN:COD TP:TKN COD:TP VSS:TS	TP:TKN COD:TP VSS:TS	COD:TP VSS:TS	VSS:TS	6		COD:TSS	TKN:COD	TP:TKN	COD: TP	VSS:TSS	•	:OD:TSSI	TKN:COD	TP:TKN	COD:TP	VSS:TSS	
7:00 2.72 0.09 0.11 104 0.92	2.72 0.09 0.11 104 0.92	0.09 0.11 0.04 0.92	0.11 104 0.92	104 0.92	0.92			7.34	0.18	0.04	148	1.00		7.83	0.16	0.12	52	0.86	
9:00 1.71 0.08 0.14 87 0.89	1.71 0.08 0.14 87 0.89	0.08 0.14 87 0.89	0.14 87 0.89	87 0.89	0.89			6.67	0.18	0.05	119	1.00		6.73	0.14	0.11	65	0.92	
11:00 7.19 0.06 0.17 89 0.93	7.19 0.06 0.17 89 0.93	0.06 0.17 89 0.93	0.17 89 0.93	89 0.93	0.93			6.65	0.16	0.07	86	0.96		5.81	0.13	0.12	63	0.91	
13:00 2.21 0.07 0.19 // 0.86			0.19 // 0.86	1/ 0.86	0.86	1		5.48	0.14	0.12	63	0.94		1.92	0.10	0.16	64	0.89	
13.00 Z.03 U.00 U.13 100 U.03 17.00 2.01 0.05 0.13 1.15 0.90		0.00 0.13 100 0.03	0.13 100 0.03	100 0.03	0000	1		0.00		21.0	00	0.07		0.10	11.0	0.10	4/	0.00	
17.00 2.91 0.09 0.13 149 0.09 10.00 3.04 0.06 0.19 147 0.04	2.91 0.09 0.13 143 0.09 3.04 0.06 0.19 1.43 0.04	0.03 0.13 143 0.03 0.06 0.13 1.13 0.04	0.13 143 0.09	100 0.09	0.09	1		80. / 89.0	0.12	0.10	88 88	0.07		0.40 6.77		0.10	10	0.09	
13.00 3.04 0.00 0.12 140 0.31 01.00 3.35 0.05 0.43 4.64 0.04	2.04 0.00 0.12 140 0.01 2.25 0.05 0.13 154 0.01	0.00 0.12 0.13 0.31	10.0 121 21.0	140	100	1		20.0			00	200		7 5 0		0.10	07	0000	
19.0 3.30 0.00 0.13 101 0.13	3.35 0.05 0.13 101 0.31 0.07 0.15 1.10 0.31	19.0 10.1 0.1.0 0.0.0 1.91	0.13 161 0.91	1.8.0	1.600	1		11.1	0.11	0.09	19	00.1		70.1	0.10	0.13	7/	0.00	
23:00 2:00 0:00 0.13 146 0.90	2.02 0.00 0.13 146 0.90	0.00 0.13 146 0.90	0.13 146 0.90	146 0.90	06.0	T		/.18	0.10	0.10	45 707	0.93		/ 9.9	0.10	0.13	//	0.97	
1:00 8:24 0.05 0.10 184 0.9	8.24 0.05 0.10 184 0.9	0.05 0.10 184 0.9	184 0.9	184 0.9	6.0	<u>د</u>		9.21	0.11	0.09	108	0.91		6.38	0.09	0.12	87	0.93	
<u>3:00 3:07 0.06 0.10 158 0.9</u>	3.07 0.06 0.10 158 0.9	0.06 0.10 158 0.9	0.10 158 0.9	158 0.9	0.0			7.96	0.11	0.07	120	1.00		6.55	0.11	0.11	83	0.97	
5:00 3.88 0.06 0.13 125 0.86	3.88 0.06 0.13 125 0.86	0.06 0.13 125 0.86	0.13 125 0.86	125 0.88	0.8	_		7.48	0.12	0.07	123	1.00		7.85	0.12	0.11	78	1.00	
3.6 0.06 0.14 1.27 0.90	3.6 0.06 0.14 1.27 0.90	0.06 0.14 127 0.90	0.14 127 0.90	127 0.90	0.90			7.5	0.13	0.08	66	0.9		6.9	0.12	0.13	68	0.9	
3.0 0.06 0.13 134 0.90	3.0 0.06 0.13 134 0.90	0.06 0.13 134 0.90	0.13 134 0.90	134 0.90	06.0	T		7.4	0.12	0.09	96	6.0		6.7	0.11	0.13	68	0.9	
12 12 12 12 12	12 12 12 12 12 12	12 12 12 12	12 12 12	12 12	12	٦		12	12	12	12	12		12	12	12	12	12	

	SSV	mg/L	6	6	7	7	9	5	4	4	4	3	4	4	5.6	4.6	12	5	7	-35%	
	TSS	mg/L	10	10	7	7	9	5	4	4	4	ю	4	4	5.7	4.6	12	5	7	-34%	
luent	P04-P	mg/L	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	0	•			
3C) Eff	NO3-N	ng/L as N															0	•			
al 5 (AF	N-XON	ng/L as N	17	17.2	17.5	18	18.6	19.3	19.7	19.7	20.2	21	20.8	20.6	19.1	19.5	12	16			
Fina	NH3-N	ng/L as N	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	0	•			
	сор	mg/L	56	49	56	58	49	45	2	43	41	45	43	45	49	47	12	41			
	Flow	mgd	5.22	5.19	3.37	2.40	2.11	1.91	2.32	2.39	2.41	2.40	2.41	2.40	2.9	2.4	12		3.7		
	VSS	mg/L	21	21	19	19	19	21	19	19	18	18	21	23	19.7	19.3	12	16	20	-18%	
	TSS	mg/L	25	27	26	27	25	28	25	25	23	23	26	26	25.6	25.7	12	21	25	-15%	
	P04-P	mg/L	0.667	0.633	0.668	0.676	0.671	0.7	0.693	0.72	0.757	0.8	0.788	0.731	0.70	0.68	12	0.6	0.7	-17%	
fluent	NO3-N	ig/L as N															0	0			
1-4 Ef	N-XOI	/Las N m	34.4	35	35.4	33.6	32.2	30.6	29.7	29.3	28.8	28	28.1	28.8	31.2	30.2	12	26			
Final	N N-EHI	/L as Mng	1.51	0.94	0.8	1.51	3.21	4.6	6.2	6.77	8.05	80	8.33	7.62	4.8	5.4	12	4	4.5	-15%	
		ng/L hg	64	62	122	64	64	62	69	66	71	73	73	17	72	68	12	61			
	0 	- P	4	90	52	7	12	5	0	0	90	90	0	4	2	4			0		
	Flor	бш	8.1	12.0	14.5	14.9	14.6	14.2	13.5	14.3	12.9	10.0	8.2	7.9	12.	13.	12		11.		
	SSA	mg/L	30	24	144	160	104	72	104	144	180	74	26	14	2'68	89.0	12	83	107	-23%	
	TSS	mg/L	30	24	156	170	112	76	114	162	200	88	26	16	97.8	100.0	12	06	116	-22%	
t	PO4-P	mg/L	0.3	0.26	66.0	1.22	1.16	1.4	1.7	2.57	2.45	1.5	1.17	0.94	1.3	1.2	12	1.1	1.3	-12%	
Effluen	NO3-N	g/L as N															0	0			
 iediate	N-XC	LasNm	.07	.08	0.05	60	.49	1.2	.56	0.05	0.05	0.05	0.05	0.05	0.4	0.3	6	•			
Intern	Ň	Is N mg/	1	2 0	v v	1	9	-	2 0	v v	v	v	v v	v v		~					
	NH3-	mg/L a	28.	29.	30.4	33.	32.5	33.(33.7	32.(32	31	28.(28.	31.1	31.5	12	26	28	%2-	
	COD	mg/L	64	62	220	276	184	152	195	363	385	169	88	77	186	177	12	168			
	Flow	pgm	8.06	11.98	14.44	14.89	14.54	14.14	13.82	14.22	12.88	9.98	8.12	7.86	12.1	13.3	12	_	10.3	18%	
 			- 1	,	1				,		1	1				_				-	

Influer	nt Isco Trougl	h : Sonford S	ampler
Date	TSS	ТР	COD
1/10/2018	1.39	1.10	1.15
1/11/2018	1.18	1.00	1.21
1/12/2018	1.46	1.07	0.99
1/22/2018	1.48	0.97	1.19
1/23/2018	1.30	1.00	1.07
Average	1.36	1.03	1.12
Median	1.39	1.00	1.15

	Influent Sampling	Location (Comparis	uo				
Sample	Loc:	Date:	TSS	ТР	COD	TSS:TP	COD:TSS	COD:TP
Influe	nt ISCO Sampler Trough	1/10/2018	332	8.14	797	41	2.40	98
Influe	nt ISCO Sampler Trough	1/11/2018	271	7.15	864	38	3.19	121
Influe	ent ISCO Sampler Trough	1/12/2018	339	8.34	862	41	2.54	103
Influe	ent ISCO Sampler Trough	1/22/2018	325	7.76	782	42	2.41	101
Influ	ent ISCO Sampler Trough	1/23/2018	292	7.64	776	38	2.66	102
Influ	ent ISCO Sampler Trough	Average	312	7.81	816	40	2.64	105
Influ	ent ISCO Sampler Trough	Median	325	7.76	797	41	2.54	102
Influ	uent Sonford Sampler Station	1/10/2018	239	7.37	969	32	2.91	94
Influ	uent Sonford Sampler Station	1/11/2018	229	7.18	715	32	3.12	100
Influ	ent Sonford Sampler Station	1/12/2018	232	7.82	868	30	3.74	111
Influ	lent Sonford Sampler Station	1/22/2018	220	7.97	655	28	2.98	82
Influ	sent Sonford Sampler Station	1/23/2018	225	7.61	722	30	3.21	95
Influ	ent Sonford Sampler Station	Average	229	7.59	731	30	3.2	96
Influ	ent Sonford Sampler Station	Median	229	7.61	715	30	3.1	95
Wast	ewater Characterization	Average				30	2.9	86.8
		Median				30	2.9	82.8

-• ú

o Trough	COD	1.02	1.03	1.01	1.06	1.00	1.02	1.02	d Sampler	1.15	1.19	1.17	1.16	1.22	1.18	1.17	rd Sampler	COD	1.17	1.23	1.18	1.22	1.23	1.20	1.22		
Channel:lsc	ТР	1.00	0.97	1.00	0.96	1.01	0.99	1.00	rough:Sonfor	1.18	1.11	1.12	1.15	1.09	1.13	1.12	nannel:Sonfo	ТР	1.19	1.08	1.12	1.11	1.10	1.12	1.11		
nary 1/2 Isco	TSS	1.11	1.09	1.10	1.18	1.21	1.14	1.11	ry 1/2 Isco T	1.04	1.09	1.05	1.15	1.00	1.07	1.05	γ 1/2 Isco Ch	TSS	1.16	1.19	1.16	1.35	1.21	1.21	1.19		
HPO Prir	Date	1/10/2018	1/11/2018	1/12/2018	1/22/2018	1/23/2018	Average	Median	HPO Prima	1/10/2018	1/11/2018	1/12/2018	1/22/2018	1/23/2018	Average	Median	HPO Prima	Date	1/10/2018	1/11/2018	1/12/2018	1/22/2018	1/23/2018	Average	Median		
	COD:TP	97	93	86	94	85	91	93		96	87	85	86	86	88	86		98	81	82	86	76	85	82		č	80 000
	COD:TSS	5.09	5.26	5.49	4.41	4.72	4.99	5.09		5.58	5.58	5.99	4.90	5.70	5.55	5.58		5.04	5.09	5.40	4.89	4.67	5.02	5.04		ļ	5.07
	TSS:TP	19.1	17.6	15.7	21.4	18.1	18.4	18.1		17.2	15.6	14.2	17.5	15.1	15.9	15.6		19.5	15.9	15.2	17.5	16.3	16.9	16.3			16.6
on	COD	453	489	489	472	481	477	481		446	474	485	446	479	466	474		388	397	416	386	392	396	392			
Comparis	ТР	4.67	5.27	5.67	S	5.65	5.25	5.27		4.65	5.45	5.69	5.2	5.58	5.31	5.45		3.94	4.9	5.06	4.51	5.14	4.71	4.90			
Location	TSS	89	93	89	107	102	96	93		80	85	81	91	84	84	84		77	78	77	79	84	79	78			
Sampling	Date:	1/10/2018	1/11/2018	1/12/2018	1/22/2018	1/23/2018	Average	Median		1/10/2018	1/11/2018	1/12/2018	1/22/2018	1/23/2018	Average	Median		1/10/2018	1/11/2018	1/12/2018	1/22/2018	1/23/2018	Average	Median			Average
ent and PC1&2 Effluent 5	Sample Loc:	PC1&2 ISCO Effluent Channel		PC1&2 ISCO Sampler Trough		PC1&2 Sonford Sampler Station			Wastewater Characterization																		
Influ	Sample No.	#11	#16	#21	#26	#31				#12	#17	#22	#27	#32				#13	#18	#23	#28	#33					

:

	Primary Clar	ifier 3 Sampling Location Comparise	ň											_	HPO Prima	ry 3 Isco C	hannel:lsc	o Trough	
	Sample No.	Sample Loc:	Date:	TSS	đ	COD	CBOD5	TSS:TP	COD:TSS	COD:TP	COD:BOD	CBOD:TSS	CBOD:TP	Date		TSS	TΡ	COD	CBOD5
	#1	PC3 ISCO Effluent Channel	11/28/2017	121	7.28	485	239	16.6	4.01	67	2.03	1.98	32.8	11/28/2	2017	1.36	1.11	1.20	1.26
	#4	PC3 ISCO Effluent Channel	11/29/2017	108	7.96	464	200	13.6	4.30	58	2.32	1.85	25.1	11/29/2	2017	1.09	1.20	1.24	1.07
100	£#7	PC3 ISCO Effluent Channel	11/30/2017	111	7.8	511	248	14.2	4.60	99	2.06	2.23	31.8	11/30/2	2017	1.13	1.12	1.06	1.24
-	#10	PC3 ISCO Effluent Channel	12/6/2017	100	7.48	548	305	13.4	5.48	73	1.80	3.05	40.8	12/6/2	2017 (0.95	1.10	1.20	1.22
	#13	PC3 ISCO Effluent Channel	12/7/2017	96	7.63	517	264	12.6	5.39	68	1.96	2.75	34.6	12/7/2	2017	1.10	1.12	1.23	1.31
		PC3 ISCO Effluent Channel	Average	107	7.63	505	251	14.1	4.75	99	2.03	2.37	33	Average		1.13	1.13	1.19	1.22
		PC3 ISCO Effluent Channel	Median	108	7.63	511	248	13.6	4.60	67	2.03	2.23	33	Median		1.10	1.12	1.20	1.24
														НРС	O Primary 1	L/2 Isco Tro	hino2: hguc	ord Sampl	er
	#2	PC3 ISCO Sampler Trough	11/28/2017	89	6.57	403	189	TSS:TP	COD:TSS	COD:TP	COD:BOD	CBOD:TSS	CBOD:TP	11/28/2	2017	1.24	1.07	1.29	1.38
	#5	PC3 ISCO Sampler Trough	11/29/2017	66	6.65	375	187	14.9	3.79	56	2.01	1.89	28.1	11/29/2	2017	1.48	1.04	1.23	1.40
	8#	PC3 ISCO Sampler Trough	11/30/2017	98	6.95	483	200	14.1	4.93	69	2.42	2.04	28.8	11/30/2	2017	1.23	1.11	1.45	1.27
	#11	PC3 ISCO Sampler Trough	12/6/2017	105	6.81	455	250	15.4	4.33	67	1.82	2.38	36.7	12/6/2	2017	1.62	1.08	1.27	1.52
	#14	PC3 ISCO Sampler Trough	12/7/2017	87	6.83	420	201	12.7	4.83	61	2.09	2.31	29.4	12/7/2	2017	1.36	1.09	1.25	1.26
		PC3 ISCO Sampler Trough	Average	96	6.76	427	205	14.3	4.47	64	2.08	2.16	31	Average		1.38	1.08	1.30	1.37
_		PC3 ISCO Sampler Trough	Median	98	6.81	420	200	14.5	4.58	64	2.05	2.18	29	Median		1.36	1.08	1.27	1.38
														ОЧН	Drimary 1	/2 Isco Cha	annel:Soni	ord Samp	er
	#3	PC3 Sampler Station	11/28/2017	72	6.12	313	137	TSS:TP	COD:TSS	COD:TP	COD:BOD	CBOD:TSS	CBOD:TP	11/28/2	2017	1.68	1.19	1.55	1.74
	9#	PC3 Sampler Station	11/29/2017	67	6.4	304	134	10.5	4.54	48	2.27	2.00	20.9	11/29/2	2017	1.61	1.24	1.53	1.49
	6#	PC3 Sampler Station	11/30/2017	80	6.26	334	157	12.8	4.18	53	2.13	1.96	25.1	11/30/2	2017	1.39	1.25	1.53	1.58
	#12	PC3 Sampler Station	12/6/2017	65	6.29	358	164	10.3	5.51	57	2.18	2.52	26.1	12/6/2	2017	1.54	1.19	1.53	1.86
	#15	PC3 Sampler Station	12/7/2017	64	6.29	337	160	10.2	5.27	54	2.11	2.50	25.4	12/7/2	2017	1.50	1.21	1.53	1.65
		PC3 Sampler Station	Average	70	6.27	329	150	10.9	4.87	53	2.17	2.25	24	Average		1.54	1.22	1.53	1.67
		PC3 Sampler Station	Median	67	6.29	334	157	10.4	4.90	53	2.16	2.25	25	Median		1.54	1.21	1.53	1.65
		Wastewater Characterization	Average					14.6	4.59	99	2.08	2.21	31.7						
			Median					13.7	4.47	67	2.10	2.23	31.1						

Attachment C: April 2018 Wastewater Characterization Data

												WRP Influ	uent				
Day	Date	Flow mgd	COD mg/L	Filtered COD mg/L	ffCOD mg/L	CBOD5 mg/L	Filtered CBOD5 mg/L	TKN mg/L as N	Filtered TKN mg/L as N	NH3 mg/L as N	Nitrate/Nox as N, mg/L	Total P mg/L as P	Filtered P mg/L as P	PO4-P mg/L as P	Total Alk mg/L as CaCO3	TSS mg/L	VSS mg/L
1	4/2/2018	11.6	634	391	263	378	242	41.3	36.9	25.2	2.70	7.6	5.7	4.7	389	210	184
2	4/3/2018	12.5	812	397	282	374	213	44.8	37.2	25.2	2.07	7.8	4.4	5.3	389	264	228
3	4/4/2018	12.4	910	463	350	537	283	43.6	38.6	24.6	1.76	8.7	5.0	5.3	365	423	387
4	4/5/2018	12.5	928	427	282	514	253	42.7	37.2	24.9	1.27	7.6	4.89	5.6	358	592	546
5	4/6/2018	12.8	751	403	276	467	217	44.0	36.9	24.4	2.07	7.9	5.1	5.0	384	322	218
6	4/7/2018	12.7	798	427	299	483	265	44.3	38.3	25.8	1.56	7.8	5.1	4.9	386	244	222
7	4/8/2018	12.0	706	348	258	434	240	46.3	36.9	25.5	1.10	6.6	4.6	4.5	388	212	198
8	4/9/2018	12.1	721	412	293	423	255	44.6	37.2	24.6	2.09	7.2	4.7	5.0	376	232	202
9	4/10/2018	12.8	810	410	276	474	225	46.9	39.5	25.5	1.54	8.7	5.4	6.2	375	241	222
10	4/11/2018	13.2	763	393	273	438	236	44.9	38.9	26.4	1.49	7.2	5.0	5.3	386	236	216
	Average	12.5	783	407	285	452	243	44.3	37.8	25.2	1.77	7.7	5.0	5.2	380	298	262
	Median	12.5	781	407	279	453	241	44.5	37.2	25.2	1.66	7.7	5.0	5.1	385	243	220
	Minimum	11.6	634	348	258	374	213	41.3	36.9	24.4	1.5	6.6	4.4	4.5	358	210	184
	Maximum	13.2	928	463	350	537	283	46.9	39.5	26.4	2.7	8.7	5.7	6.2	389	592	546
	Count	10	10	10	10	10	10	10	10	10	10	10	9	10	10	10	10
			= Data Scr	eened from da	taset		April 2nd sa	mple represe	nts 7:30am on	4/1 to 7:30am	on 4/2						
	CALCULATIONS																
	_		(GENERAL						SOLIDS CH	HARACTERIZA	TION	1				1
															_		
				COD(WRP):		CBOD5:			FCVXI/S	FCVXI/S		B.1/00	FupN	FupP	Fna		
Day	Date	COD:TKN	IP:IKN	COD	COD:TP	155	V55:155	155	pCOD:VSS	pCOD:VSS	pN:V55	pP:VS5	pN/pCOD	pP:pCOD	NH3:1KN	COD:BOD5	SCOD:COD
1	4/2/2018	15.4	0.185	0.97	83	1.80	0.88	26	1.32	1.32	0.024	0.011	0.018	800.0	0.61	1.7	0.62
2	4/3/2010	10.1	0.174	0.70	104	1.42	0.00	30	1.02	1.02	0.033	0.015	0.010	0.008	0.56	2.2	0.49
3 	4/4/2010	20.9	0.199	0.71	100	1.27	0.91	30	1.10	1.10	0.013	0.009	0.011	0.000	0.50	1.7	0.51
	4/5/2016	17.1	0.170	0.03	05	0.07	0.92	40	1.60	1.60	0.010	0.005	0.011	0.009	0.56	1.0	0.46
6	4/0/2018	18.0	0.179	0.85	102	1.45	0.00	22	1.00	1.00	0.033	0.013	0.020	0.000	0.55	1.0	0.54
0	4/8/2018	15.2	0.170	0.00	102	2.05	0.31	1/	1.07	1.07	0.027	0.012	0.010	0.006	0.55	1.7	0.04
	4/9/2018	16.2	0.142	0.84	100	1.82	0.33	30	1.01	1.01	0.047	0.010	0.020	0.000	0.55	1.0	0.43
9	4/10/2018	17.3	0.185	0.77	93	1.02	0.92	19	1.80	1.80	0.033	0.012	0.024	0.000	0.54	1.7	0.51
10	4/11/2018	17.0	0.161	0.79	106	1.86	0.92	20	1.71	1.71	0.028	0.010	0.016	0.006	0.59	1.7	0.52
	Average	17.7	0.174	0.75	102	1.65	0.88	35	1.53	1.53	0.029	0.011	0.018	0.007	0.57	1.74	0.52
	Median	17.2	0.177	0.82	103	1.81	0.91	28	1.63	1.63	0.030	0.011	0.018	0.008	0.56	1.70	0.51
	Minimum	15.2	0.142	0.03	83	0.87	0.68	14	0.92	0.92	0.010	0.005	0.011	0.006	0.54	1.61	0.46
	Maximum	21.7	0.199	0.97	122	2.05	0.01	104	1.82	1.82	0.047	0.015	0.026	0.008	0.61	2.17	0.62
	Count	10	10	10	10	10	10	10	10	10	10	10	10	9	10	10	10
			· · · ·					· · · ·						· · · · ·			

			Sonford		Sonford	Senford				
	Date	Temp	TKN	Sonford TP	C00	TSS	C00	TKN	TP	155
Day	20022	c	mg/L	mgit.	mg/L	mgit.		1000	10	1.1
4	4/22018	12.0	41	7.55	616	199	1.03	1.01	0.96	1.05
2	4/3/2018	13-0	:43	7.27	625	220	1.31	1.04	1.07	1.20
3	442018	13.0	40	6.94	6.45	218	1.40	1.10	125	1.94
4	4/5/2018	13.0	2	9.97	2t	218	29.94	22.47	0.76	2.72
5	4/6/2018	13.0	42	7.36	665	301	134	1.05	1.07	1.07
6	4/7/2018	13.0	42	7.51	676	258	1.18	1.04	1.10	0.95
7	4/8/2018	13.0	42	6.12	623	170	1.12	1.11	1.07	12
8	4/9/2018	13.0	43	8.58	606	210	1.19	1.04	1.10	1.10
9	4102018	13.0	44	7.53	623	154	1.30	1.08	1.15	1.47
10	4/11/2018	13.0	42	6.67	606	187	1.26	1.06	1.05	1.25
_	Average Median	12.9	30	1	671 622	215 214	1,22	1,05	1,06	1.40
	Minimum	12.0	2	6	34	164	1.03	1.01	8,76	8,%
	Count	10	10	10	10	10	5	1.11	145	10
	Conservation of the	1 A 1		1 works	1 - 12				1.1.1.1	11
	CALCULATIONS	2.000.000	-	-		<u> </u>			-	<u> </u>
		ACTIONS		-					-	
Day	Date	colCOD	Fbe	Fus	Fpo4 P04-P:TP	C00:T\$\$	FFCOD: \$COD	Fanb	BOD TP	+800: 8005
.1	4/2/2018	128	0.39	0.026	0.62	3.0	0.67	0.25	50	0.64
2	43,0018	115	0.35	0.022	0.68	- 3.5	0.71	0,17	-48	0.57
	44,7018	113	0.35	0.031	0.61		9.76	0.08	62	9.53
A	4/5/2018	145	0.28	0.002	0.73	18	0.66	0.06	68	
5	4/6/2018	127	0.34	0.024	0.64	2.3	0.60	0.19	59	0,48
6	4/7/2018	128	0.35	0.023	0.63	3.3	0.70	0.18	62	0.55
1	4/6/2015		0.34	0.028			0.74	0.25		
Ε.	4/9/2018	119	0.38	0.022	0.70	3.1	0.71	0.21	59	0.60
9	4/10/2018	134	0.32	0.020	0.71	3.4	0.67	0.18	55	0.47
10	4/11/2018	120	0.33	0.024	0.73	3.2	0.69	0.22	. E1	0.54
1	Average	102	0.34	0.824	0.67	2.84	0.70	0.18	58	0.54
	Median	120	0.34	0.023	0.65	3.09	0.70	0.19	68	0.54
	M internet	0.0	0.38	0.828	0.61	1.57	0.66	0.06	48	6.44
	Maximum	145.0	0.39	0.031	0.73	3.36	0.76	0.25	68	0.64
	Count	42	10	10	10	10	40	40	40	40
	C.CONTE	14	1 10	1 10			10	10	1 10	1.1.1.1

Composite Sampler: Sonford sampler

		ffcod:	COD	0.26	96.0	0.32	0.26	0:30	0.29	0.26	0.36
		sCOD:	COD	0.44	0.52	0.92	0.56	0.61	0.54	0.44	0.92
			Fac	0.13	0.18	0.12	0.30	0.18	0.16	0.12	0.30
			Fbs	0.23	0.33	0.28	0.24	0.27	0.26	0.23	0.33
		Effluent	ffCOD	18	18	28	20				
		VFAs as mg	COD/L	24	45	24	66	40	35	24	66
		Valeric Acid	mdd	v	Ŷ	<u>۲</u>	<1	i0//IC#	iWNN#	0	0
		Isovaleric	Acid ppm	۰ ۲	41	<1	<1	i0//IC#	iWNN#	0	0
	2-	Methylbutyric	Acid ppm	Ŷ	ř	<u>۲</u>	<1	i0//IC#	iWNN#	0	0
- VFAs		Butyric Acid	bpm	1	1.3	<1	<1	1.2	1.15	-	1.3
P Influent		Isobutyric	Acid ppm	Ŷ	Ŷ	<1	<1	i0//IC#	iWNN#	•	0
WR		Propionic	Acid ppm	2.3	9.5	3.8	23.2	9.7	6.65	2.3	23.2
		Acetic Acid	mdd	17.9	26.9	16.8	28.8	22.6	22.4	16.8	28.8
		ffcoD,	l/gm	199	269	229	242	235	235.5	199	269
		Filtered	COD, mg/L	340	395	659	520	479	458	340	629
		COD,	mg/L	772	755	716	923	792	764	716	923
			Sample	Sample 1	Sample 2	Sample 3	Sample 4	Average	Median	Minimum	Maximum
			Time	12:59 PM	12:30 PM	9:00 AM	8:42 AM				
			Date	4/2/2018	4/3/2018	4/4/2018	4/5/2018				

	Final 5 Efflu	uent (ABC Effluent)
	Date	ffCOD
Day		mg/L
1	4/2/2018	18
2	4/3/2018	18
3	4/4/2018	28
4	4/5/2018	20
5	4/6/2018	18
6	4/7/2018	18
7	4/8/2018	20
8	4/9/2018	16
9	4/10/2018	16
10	4/11/2018	18

Attachment D: HPOAS Off Gas Testing Data

Rochester D	Diurnal Data	a							
		1st Stage (Carbon) HPOAS Train							
Date	Time	DO 1	DO 2	DO 3	Pur 1	Pur 2	Pur 3	Vent	Vent Vel
8/28/2017	10:30	19	>20	>20	76	72	70	72	6.7
8/28/2017	13:25	17.8	>20	>20	77	72	70	68	3.6
8/28/2017	16:00	18.8	19	19	70	64	62	64	4.75
8/28/2017	20:20	8.2	12.7	15.2	68	58	54	54	1.5
8/29/2017	0:45	11	12.8	12.4	62	52	41	45	
8/29/2017	8:30	16.8	16.9	17.1	63	53	48	48	1.53
8/29/2017	11:45	12.3	14.2	15.1	58	48		44	1.5
8/29/2017	16:30	10.2	9.8	9.4	48	37	30		
8/29/2017	20:00	9.7	8.9	7.9					
8/30/2017	0:30	12.5	10	7.4	58	38	25		
8/29/2017	8:45	12.8	13.5	12.8					
			2nd Stage Nitrificatin Train						
		DO 1	DO 2	DO 3	Pur 1	Pur 2	Pur 3	Vent	Vent Vel
8/28/2017	10:30	8.1	9	10.2	70	60	52		
8/28/2017	13:25	9	8.1	8.6	68	60	51		
8/28/2017	16:00	6.4	7.4	6.4	72	59	49		
8/28/2017	20:20	6.5	6.4	4.7	69		46		
8/29/2017	0:45	3.8	4.8	3.7	68				
8/29/2017	8:30	7.56	7.56	5.88	65		38		
8/29/2017	11:45	5	5.7	3.8	64	54	40		
8/29/2017	16:30	4.2	5.7	3.8	72	59	43		
8/29/2017	20:00	4.5	5.3	3.5	72	52	42		
8/30/2017	0:30	3.2	3.7	2.7	70	50	41		
8/29/2017	8:45	5.1	3.7	6.9	73	61	42		

Attachment E: Nitrification Rate Testing

Technical Memorandum

 30 E 7th Street
 114A-175 Longwood Road South

 Suite 2500
 Hamilton, Ontario

 St Paul, MN 55101
 L8P 0A1 CANADA

 T: 651-298-0710
 P: (905) 481-2607

 F: 651-298-1931
 F: (905) 481-2610

Prepared for: City of Rochester

Project Title: Rochester WRP Facilities Plan

Project No.: 150811

Technical Memorandum

Subject:	Nitrification Rate Testing
Date:	September 2017
To:	Matt Baker, P.E. Project Manager
From:	Harold Voth, P.E. Project Manager
Prepared by:	Daniela Conidi, Ph.D., Envirosim Associates
	Gillian Burger, M.A.Sc., E.I.T., Envirosim Associates
	Peter L. Dold, Ph.D., Envirosim Associates
	Christopher M. Bye, Ph.D., P.E. Envirosim Associates

Reviewed by: Don Esping, P.E. Senior Process Engineer

Limitations:

This document was prepared solely for the City of Rochester in accordance with professional standards at the time the services were performed and in accordance with the contract between City of Rochester and Brown and Caldwell dated May 15, 2017. This document is governed by the specific scope of work authorized by the city of Rochester; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by the City of Rochester and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Table of Contents

List of Figures	iii	
List of Tables	iii	
Section 1: Introduction	4	
Section 2: Background on Testing	5	
2.1 Washout Test	5	
2.2 Specific Nitrification Rate Test	6	
Section 3: Results and Discussion	11	
3.1 Washout Test	11	
3.2 SNR Testing	17	
3.2.1 SNR #1		
3.2.2 SNR #2 and SNR #3	23	
3.2.3 SNR #4	25	
Section 4: Conclusions	29	
Section 5: Recommendations		
Section 6: References		

List of Figures

Figure 1. Typical Washout Test Response	6
Figure 2. Ammonia Removal and Oxidized Nitrogen Production vs. Time In an SNR Test	7
Figure 3. Results From Parallel SNR Tests Conducted to Identify and Quantify Inhibition From an Industrial Source	9
Figure 4. Washout Test Apparatus for Rochester WRP ABC Plant Mixed Liquor	12
Figure 5. Observed Temperature in Washout Test	13
Figure 6. Observed pH in Washout Test	14
Figure 7. Washout Test Showing Observed (Points) and Predicted (Line) Response	15
Figure 8. Washout Test Reactor on Day 3	16
Figure 9. Washout Test Showing Observed (Points) and BioWin-Simulated (Line) Response	17
Figure 10. SNR Test #2 (Left) and SNR Test #3 (Right), August 30, 2017	20
Figure 11. SNR Test #4, August 31, 2017	21
Figure 12. Ammonia Removal and NO _x Production vs. Time for SNR Test #1	22
Figure 13. Ammonia Removal and NO _x Production vs. Time for SNR Test #2	24
Figure 14. Ammonia Removal and NO _x Production vs. Time for SNR Test #3	25
Figure 15. Ammonia Removal and NOx Production vs. Time for SNR Test #4	27
Figure 16. Effluent Ammonia vs. SRT for Different µAOB and µAOB Values (12°C)	31

List of Tables

Table 1. Summary of Results for Example SNT Test	7
Table 2. Summary of Washout Test Target Conditions for Rochester WRP ABC Plant Mixed Liquor,Aug. 31 – Sept. 1, 2017	.11
Table 3. Summary of SNR Tests Conducted at Rochester WRP, Aug. 29-31, 2017	.18
Table 4. Summary of Results for SNR Test #1	.23
Table 5. Summary of Results for SNR Test #2	.24
Table 6. Summary of Results for SNR Test #3	.24
Table 7. Summary of Results for SNR Test #4	.28
Table 6. Summary of SNR Tests Conducted at Rochester WRP, Aug. 29-31, 2017	.30

Section 1: Introduction

• The greatest uncertainty in biological nutrient removal plant design and/or process optimization is nitrification performance. Nitrification performance essentially is quantified by the maximum specific growth rate of the autotrophic nitrifiers (μ_{AUT}) in the system. Experience has shown that in many instances there is consistency in the magnitude of the μ_{AUT} parameter from plant to plant, particularly if there is limited industrial input to the wastewater. However, significantly lower than typical values are encountered on occasion due to inhibitory components in the influent. The implication of a low nitrifier growth rate is that the system must be operated at a longer aerobic SRT to avoid washout of nitrifiers and maintain nitrification. This in turn translates into an increased sludge mass in the system, resulting in either increased reactor tankage and clarifier area for new plant designs or reduced treatment capacity for existing plants. Typically, if pilot testing is not conducted to measure the plant-specific μ_{AUT} value, engineering analysis necessarily should be based on a conservative (low) estimate of the value. This in turn can have a substantial capital cost implication.

The nitrification testing conducted in this investigation was used to determine whether nitrifier growth is being inhibited at the Rochester Water Reclamation Plant (WRP). The plant treats an average of 13 million gallons per day (mgd) and is comprised of two parallel treatment processes: A High Purity Oxygen (HPO) plant and an Aeration Basin Complex (ABC) capable of biological nutrient removal. The HPO plant is rated at 19.1 mgd and the ABC is rated at 4.75 mgd. The raw influent is screened, degritted and then split between the HPO plant and ABC. The split ratio between the two processes can be varied to a degree to optimize the overall plant performance.

In recent years, nitrification has been modelled as a two-step process whereby ammonia oxidizing bacteria (AOB) convert ammonia to nitrite and nitrite oxidizing bacteria (NOB) convert nitrite to nitrate. Each type of bacteria has a unique set of kinetic and stoichiometric parameters, including a maximum specific growth rate, μ_{AOB} and μ_{NOB} . The maximum specific growth rate of nitrifiers (μ_{AUT}) in the traditional one-step nitrification model essentially is equivalent to the maximum specific growth rate of AOB (μ_{AOB}) in the two-step nitrification model. The proviso here is that there is not significant nitrite accumulation, and the ammonia converted to nitrite is in turn converted to nitrate.

Two types of nitrification tests were carried out:

- **Washout Test:** A batch test method with duration of approximately five days was conducted to estimate the maximum specific nitrifier growth rate (µAUT) for the ABC plant at the Rochester WRP. This µAUT value will indicate whether there are components of the influent that are causing inhibition of nitrification. This parameter is of paramount importance for a nitrifying plant in that it essentially determines the aerobic solids retention time (SRT) that the plant must be operated at to achieve stable nitrification.
- **Specific Nitrification Rate Tests:** Four specific nitrification rate (SNR) batch tests each lasting several hours were conducted to determine whether:
 - The ABC plant is fully nitrifying and therefore has a typical ratio of NOB to AOB.
 - There are inhibitory compounds present in the HPO primary effluent and whether those are biologically degraded in the HPO plant.
 - The nitrification rate increases as the pH of the HPO mixed liquor is increased to 7.

Further background on the testing that was conducted is provided in Section 2. Results and discussion are presented in Section 3.

Section 2: Background on Testing

This section provides further information on the tests that were conducted at the Rochester WRP.

2.1 Washout Test

The Washout Test method for estimating the maximum specific nitrifier growth rate (μ_{AUT}) is based on monitoring the effluent nitrite and nitrate responses over a period of several days in a flow-through reactor initially filled with nitrifying mixed liquor from the full-scale plant (WERF, 2003). Influent to the reactor typically is plant raw influent or primary effluent. At the start of the test the mixed liquor in the test reactor is supplemented with ammonia, and ammonia is added to the influent each day to ensure that the ammonia concentration in the reactor is not limiting to ensure that AOB are operating at their maximum rate. Additional alkalinity is added as required to ensure that nitrifier growth is not limited by non-optimal pH. The influent flow rate (Q) is selected such that the hydraulic retention time [HRT = Volume/Q (equivalent to SRT for a flow-through reactor)] will result in nitrifier washout. EnviroSim has found this test to be a very robust method for determination of μ_{AUT} .

A typical test response is shown in Figure 1. The test influent flow rate was set such that the SRT was 0.75 days. Effluent samples from the Washout Test were collected throughout the day, filtered immediately, and analyzed for nitrate, nitrite, and ammonia concentrations. The test was completed within 5 days. Features to note are:

- Initially, the nitrite+nitrate response shows an increase to a maximum. During this phase, the mass of nitrifiers in the system is large and a substantial amount of the influent ammonia is oxidized.
- A maximum nitrite+nitrate concentration is followed by a semi-exponential decrease with time. The nitrifiers are being washed out of the system, and the remaining mass oxidizes a lesser and lesser amount of the influent ammonia.
- The large change in nitrite+nitrate response over the test duration is particularly suitable for parameter estimation and lowers the influence of "outlier" data points.
- Test duration typically is 4 to 6 days.

Nitrification at WWTPs may be adversely impacted due to nitrifying organisms' sensitivity to a variety of compounds in the influent (e.g. certain metals and organic compounds). Problems of nitrification inhibition at WWTPs usually are manifested by a reduced nitrifier maximum specific growth rate (μ_{AUT}). Knowledge of μ_{AUT} is therefore very important in diagnosing nitrification performance. For example, it determines the appropriate aerobic SRT that the plant should be operated at to achieve and maintain stable nitrification performance. The implication of a low nitrifier growth rate is that the system must be operated at a long SRT to avoid washout of nitrifiers and/or effluent ammonia breakthrough. Also, the value of μ_{AUT} can be compared to conventionally accepted values for this parameter to help determine whether the plant is experiencing acute or chronic nitrification inhibition.

2.2 Specific Nitrification Rate Test

In an specific nitrification rate (SNR) test, a volume of mixed liquor or return activated sludge (RAS) is collected from a nitrifying plant and mixed with a diluent (e.g. treatment plant influent wastewater, primary effluent, etc.). Ammonia typically is added to the batch test at the start to set a target initial concentration in the range of 25 to 35 mgN/L. The batch test is then fully aerated and the production of nitrite and nitrate (NO_X) is monitored over time (e.g. 3-6 hours). Dissolved oxygen (DO) concentration is maintained above say 3 mg/L to ensure that DO does not limit nitrifying organisms (AOB or NOB). Because the relative change in nitrifier population is small over the duration of the test, there usually is a linear response in the nitrogen species.

Figure 2 shows an example of the response of ammonia-, nitrite-, and nitrate-nitrogen in a fully-aerated SNR test. Total inorganic nitrogen (TIN) is also plotted as this provides an approximate mass balance check and an indication of whether factors such as ammonia stripping or denitrification are interfering in test results. In tests where influent wastewater is added the initial ammonia response may not be initially linear primarily as a result of conversion of organic nitrogen to ammonia offsetting ammonia removal by AOB.

Linear regression analysis is used to estimate the ammonia removal rate (NH₃RR), observed nitrite accumulation rate (NO₂AR), nitrate production rate (NO₃PR) and NO_x production rate (NO_xPR). Dividing the NH₃RR and NO_xPR by the batch volatile suspended solids (VSS) concentration yields the specific ammonia removal rate (SNH₃RR) and the specific NO_x production rate (SNO_xPR), as shown in Table 1. It should be noted that the SNH₃RR and SNO_xPR are different and hence the TIN concentration changes slightly throughout the test. This is expected, since nitrification is not the only process impacting the ammonia concentration in these tests. For example, ammonia also is produced in the test *via* the ammonification of organic nitrogen from the influent wastewater or that released through heterotrophic bacteria decay; it is consumed as a cellular synthesis requirement during heterotrophic

bacteria growth, etc. Because of the multiple processes impacting ammonia concentration, it is important that **only** NO_x production be used to assess nitrification kinetics.

In Table 1 the specific rates were corrected to 20°C using the following equation where θ is the Arrhenius value. An Arrhenius value of 1.072 was used for the SNH₃RR, SNO₃PR and SNO_xPR.

 $SNPR_{20} = SNPR_{T}\theta^{(20-t)}$

Figure 2. Ammonia Removal and Oxidized Nitrogen Production vs. Time in an Example SNR Test.

Table 1. Summary of Results for Example SNR Test			
VSS (mg/L)	3116		
Average Test Temperature (°C)	21.9		
NH ₃ RR (mgN/L/min)	0.294		
SNH ₃ RR (mgN/gVSS/hr)	5.65		
SNH ₃ RR corrected to 20°C (mgN/gVSS/hr)	4.96		
NO _x PR (mgN/L/min)	0.360		
SNOxPR (mgN/gVSS/hr)	6.92		
SNO _x PR corrected to 20°C (mgN/gVSS/hr)	6.07		
NO ₃ PR (mgN/L/min)	0.276		
NO ₂ AR (mgN/L/min)	0.084		

Although these tests do not yield an estimate of the AOB and NOB maximum specific growth rate required for process modelling input, they do provide very useful quantitative information and also help to identify inhibition problems. Comments on problems with estimating nitrifier maximum specific growth rates from SNR test data are provided in WERF, 2003. In a *fully nitrifying* system, if all of the nitrite generated from AOB oxidation is in turn converted to nitrate by NOB (*i.e.* no nitrite-shunt is occurring and the same amount of nitrogen is processed in each step) then the ratio of NOB/AOB should equal the ratio of the respective yield coefficients. For example, if $Y_{NOB} = 0.09$ and $Y_{AOB} =$ 0.15, then NOB/AOB = 0.6 (Dold *et al.*, 2015).

In the fully-aerated SNR test, nitrite is generated from ammonia and converted to nitrate simultaneously, so the overall nitrite production rate (NO₂PR) equals the observed nitrite accumulation (NO₂AR) rate plus the nitrate production rate (NO₃PR):

$$NO_3PR = \Delta NO_3/\Delta t$$

$$NO_2PR = \frac{\Delta NO_2}{\Delta t} + \frac{NO_3}{\Delta t} = \frac{\Delta NO_X}{\Delta t} = NO_XPR$$

The ratio NO₃PR/NO_xPR [i.e. $(\Delta NO_3/\Delta t) / (\Delta NO_x/\Delta t)$] is linked directly to the NOB/AOB organism ratio (but not equal to NOB/AOB because NO₃PR/NO_xPR incorporates the maximum growth rates of AOBs and NOBs). The NO₃PR / NO_xPR should equal the ratio of the NOB and AOB and maximum specific growth rates (μ_{NOB} / μ_{AOB}) (Dold *et al.*, 2015). For 20°C values of $\mu_{NOB} = 0.7$ /d and $\mu_{AOB} = 0.9$ /d, the ratio is $\mu_{NOB} / \mu_{AOB} = 0.78$. However, if a lower value is measured in a fully-aerated SNR test on plant mixed liquor, then it is likely that the NOB population is suppressed and nitrite shunt is occurring in the plant.

In the fully-aerated example SNR test in Figure 2, the NO₃PR is 0.276 mgN/L/min and the NO_xPR is 0.360 mgN/L/min, hence the NO₃PR/NO_xPR is 0.77. This indicates that NOB are not repressed and that nitrite-shunt is not occurring at the plant.

The main utility of the SNR test is that, by varying a single factor (e.g. influent sample) between two tests, the two results can be compared to see if that factor impacts nitrification rate. When investigating potential inhibition of nitrification, a pair of SNR tests would be conducted where one test is performed in the absence of the suspected inhibitor (the control), and the other test is performed in the presence of the suspected inhibitor. The mixed liquor used in both tests should be from a fully nitrifying plant where there is no apparent inhibition (preferably with minimal industrial input). Comparing the relative results can provide useful qualitative and quantitative information about the potential inhibition. Figure 3 below shows an example from such an approach from a wastewater treatment plant that was accepting significant inputs from an industrial source.

In the pair of SNR tests shown in Figure 3, the control test (upper chart) was conducted in the absence of the industrial input and the test in the lower chart was conducted with the industrial input present at the anticipated concentration levels (based on flows and loads), which in this case was 4% of the influent by volume. The SNO_xPR in the control test was 3.26 mgN/gVSS/hr whereas it was 1.92 mgN/gVSS/hr in the test containing industrial influent. Thus, the presence of the industrial influent reduced the SNO_xPR by 41.2%, which clearly demonstrates nitrification inhibition. It should be noted that in both tests, at the start the net ammonia removal rate appeared to be low for a period before it was removed at a steady rate. This occurred because the ammonification of organic nitrogen in the influent wastewater was generating ammonia at the same time nitrification was removing ammonia. The example SNR tests shown in Figure 3 were part of a project where several pairs of

SNR tests were run to investigate the impact of different dilution ratios on nitrification. For example, when the industrial input comprised 1% of the influent by volume, the SNO_xPR was reduced by 20.5%.

1. Figure 3. Results from Parallel SNR Tests Conducted to Identify and Quantify Inhibition from an Industrial Source.

It is important to know how much lower an SNO_xPR value from a test with a suspected inhibitor must be compared to the SNO_xPR value of the control SNR test to confidently state that the test demonstrates nitrification inhibition compared to the control test. Each SNR test is subject to various sources of error such as mixing gradients, measurement of solids and nitrogen species, *etc.* It is therefore expected that even carefully controlled replicate tests conducted in parallel under seemingly identical conditions likely will yield slightly differing SNO_xPR values. EnviroSim has conducted past in-house investigations to asses this variability. To determine the absolute percent difference in SNO_xPR values above which a test demonstrates nitrification inhibition compared to the control test, EnviroSim ran a series of 7 identical control SNR tests on reactors containing mixed liquor and raw influent from a well-nitrifying activated sludge plant. These tests were run over several days while the influent loading and operation (including SRT) of the plant were relatively constant. The average percent difference in SNO_xPR values among the control tests was found to be 4.9% with an upper bound of 8.5% at a 95% confidence interval. Therefore, a reasonable basis for assessing data is to assume that nitrification inhibition is occurring if the SNO_xPR value is *more than* 8.5% lower than the control test.

Section 3: Results and Discussion

3.1 Washout Test

A Washout Test using mixed liquor obtained from the sampling port at the end of the ABC plant aeration tanks at the Rochester WRP was completed over a period of 5 days. The general procedure for the tests followed the published Washout Test protocol (WERF, 2003) discussed in the previous section. Prior to commencing the test, the ABC mixed liquor was allowed to settle in a bucket. Some of the supernatant was decanted from the bucket to thicken the mixed liquor by a factor of about 1.33. This was done to increase the ABC mixed liquor concentration to approximately 4,000 mg/L. Fresh primary effluent from the ABC plant was collected each day to serve as feed to the test reactor. Feed batches were grab samples generally collected around 9:30 am from the ABC primary effluent sample pump. The sample pump was turned on and the primary effluent was allowed to flow into the drain for approximately one minute before it was collected in a sample container. This was done to flush the sampling pipe of any sediment that may have been present to ensure the collected sample was representative of primary effluent. The ABC primary effluent sample had a black color every day it was collected. The test reactor was aerated using aquarium air pumps and air stones, and a stand mixer provided mixing. The nominal reactor volume was 8 L and the influent flow rate was set at a target of 11.43 L/d, resulting in an SRT of 0.70 day. Effluent samples from the Washout Test were collected and filtered immediately several times per day and analyzed for nitrate-, nitrite-, and ammonia-nitrogen using the following Hach spectrophotometric methods: TNTplus 832 HR Ammonia; TNTplus 836 HR Nitrate; TNTplus 840 HR Nitrite. The collection time and volume of each sample was recorded and the volume of effluent collected was measured each day to allow calculation of the exact flow through the reactor, thereby accounting for any small errors in the set pump flow rate. Table 2 summarizes the target conditions for the Washout Tests. Figure 4 shows the testing apparatus set up at the Rochester WRP laboratory facility by EnviroSim.

Table 2. Summary of Washout Test Target Conditions for Rochester WRP ABC Plant Mixed Liquor, Aug. 31 – Sept. 1, 2017			
Parameter	Value/Detail		
Nominal Test Volume (L)	8		
Target feed rate (L/d)	11.43		
Target HRT (days)	0.70		
Mixed Liquor Source	End of ABC aeration tank		
Feed Source	ABC primary effluent		

Figure 4. Washout Test Apparatus for Rochester WRP ABC Plant Mixed Liquor

Although the Washout Test methodology is quite robust and environmental conditions in the test usually remain stable, test conditions are checked several times daily through measurement of temperature, pH and DO concentration. The test was set up in a room with reasonable temperature control, and the temperature fluctuated about ± 2 °C around 25°C. The average temperature was used to adjust the μ_{AUT} estimate to the standard reference temperature of 20°C using the following Arrhenius relationship:

$$\mu_{AUT,T} = \mu_{AUT,20} \cdot 1.072^{(T-20)}$$
[1]

Temperature measurements for the test are shown in Figure 5. The average temperature in the test was 25.0° C with a standard deviation of 1.3° C.

In this project, pH control was achieved through addition of sodium bicarbonate to the influent feed batches and test reactor as required. Figure 6 shows the observed pH during the test. The test was aerated with an aquarium air pump and air stones. The dissolved oxygen was maintained between 2 and 5 mg/L to provide adequate aeration so that oxygen would not limit the nitrification rate.

Figure 5. Measured Temperature in Washout Test.

Figure 6. Observed pH in Washout Test

Phosphorous in the form of potassium dihydrogen phosphate was dosed periodically into the reactor to maintain a soluble phosphate concentration of at least 1 mgPO4-P/L throughout the Washout Test. At the time of testing the ABC plant was biologically removing phosphorous. Phosphorous uptake was observed during the fully-aerated Washout Test because the ABC mixed liquor contained a substantial population of PAOs.

The NO_x-N response for the Washout Test is shown in Figure 7. The continuous line shown in Figure 7 results from the non-linear regression fit of the equation that describes the expected theoretical response (WERF, 2003). This regression yielded a μ_{AUT} estimate of 0.63 d⁻¹ (corrected to 20 °C using Equation [1]). Some adjustment of the Washout μ_{AUT} estimate is necessary to account for the kinetic model switches that simulators such as BioWinTM apply to μ_{AUT} . The most significant correction will be for the DO concentration in the test. The average measured DO was 3.8 mg/L. Using a typical DO switching function half-saturation value of 0.25 mg/L, the corrected μ_{AUT} value suitable for direct input to BioWin will be:

$$\mu_{AUT,CORR} = 0.63d^{-1} \cdot \frac{(0.25\frac{mg}{L} + 3.8\frac{mg}{L})}{3.8\frac{mg}{L}} = 0.68d^{-1}$$
[2]

The μ_{AUT} estimate of 0.68 d⁻¹ (with a 95% confidence interval of <0.65 d⁻¹, 0.70 d⁻¹>) is lower than the typical range of 0.8 – 1.0 d⁻¹ observed at many other wastewater treatment plants (WERF, 2003). This suggests that there is some degree of nitrification inhibition at the Rochester WRP.

Figure 8 below shows the Washout Test reactor on Day 3. The mixed liquor in the reactor is noticeably more dilute than its starting concentration on Day 0 shown previously in Figure 4.

Figure 8. Washout Test Reactor on Day 3.

The Washout Test was simulated using BioWin which employs a two-step nitrification model. The model was calibrated by adjusting the maximum specific growth rate of AOB (μ_{AOB}) and NOB (μ_{NOB}). The purpose of simulating the Washout Test was to: (1) verify μ_{AUT} (*i.e.* μ_{AOB}) estimated from the non-linear regression described above; and (2) estimate μ_{NOB} .

The ABC plant was simulated at steady-state at an aerobic SRT of 9 days to estimate the AOB and NOB concentrations in the ABC mixed liquor. The NOB/AOB ratio was 0.6 in the mixed liquor, which is expected for a fully nitrifying system. The Washout Test was simulated similar to the operation of the actual test:

- A batch reactor was filled with ABC mixed liquor supplemented with ammonia and alkalinity.
- The batch reactor was fed with an influent stream representing ABC primary effluent supplemented with ammonia and alkalinity.
- The Washout Test was simulated dynamically for 5 days at the same temperature and dissolved oxygen concentration as in the actual test.

The simulated and measured concentrations of nitrate- and nitrite-nitrogen in the Washout Test are shown in Figure 9. The purpose here was not to conduct an exhaustive simulation study. Rather, the objective was mainly to provide confirmation of the experimental results. It is evident that the simulation shows good agreement in terms of nitrite, nitrate and NO_x-N concentrations.

The maximum specific growth rate of AOB and NOB in the calibrated model are:

The μ_{AOB} value of 0.70 d⁻¹ estimated using the BioWin model closely agrees with the μ_{AUT} (*i.e.* μ_{AOB}) value of 0.68 d⁻¹ (with a 95% confidence interval of <0.65 d⁻¹, 0.70 d⁻¹>) estimated by nonlinear regression. The μ_{NOB} value of 0.65 d⁻¹ estimated from the simulation is close to the typical μ_{NOB} value of 0.70 d⁻¹.

Figure 9. Washout Test Showing Observed (Points) and BioWin-Simulated (Line) Response.

3.2 SNR Testing

Four SNR tests were conducted alongside the Washout Test on August 29th, 30th and 31st, 2017. These SNR tests were used to determine whether:

- The ABC plant is fully nitrifying and therefore has a typical ratio of NOB to AOB.
- There are inhibitory compounds present in the HPO primary effluent and whether those are biologically degraded in the HPO plant.
- The nitrification rate increases as the pH of the HPO mixed liquor is increased from the value in the HPO reactor (5.85) to 7.

Table 3. Summary of SNR Tests Conducted at Rochester WRP, Aug. 29-31, 2017						
SNR Test	Test Date(s)	Test Objective	Activated Sludge Source & Volume	Diluent Source & Volume	Target Test Starting NH3 (mg/L)	Summary of Result
1	August 29, 2017	Determine SNO3PR / SNOXPR ratio to verify whether ABC plant is fully nitrifying	ABC RAS (4 L)	ABC Primary Efflu- ent (4 L)	30	SNO3PR / SNOXPR = 0.78 which suggests typical bio- mass ratio of NOB/AOB for fully nitrifying plant
2		Determine whether there are inhibitory compounds present in the HPO pri- mary effluent and whether they are biologi- cally degraded in the HPO plant	HPO 2 nd Stage RAS (4 L)	HPO Primary Efflu- ent (4 L)	30	The SNOXPR values be- tween SNR 2 and SNR 3 are equivalent indicating that the HPO reactors do not remove the inhibitory components in the plant influent
3	August 30, 2017		HPO 2 nd Stage RAS (4 L)	HPO Secondary Effluent (4 L)	30	
4	August 31, 2017	Determine whether the ni- trification rate increases as the pH is allowed to in- crease from 5.85 to 7 in the SNR test	HPO 2 nd Stage Mixed Liquor (4 L)	N/A	30	The nitrification rate re- mained constant as the pH increased from 5.85 to 7 in the SNR test

The following points provide further experimental details for the various SNR tests:

- The first SNR test was seeded with a grab sample of RAS from the ABC plant. A grab sample of ABC primary effluent was added to the activated sludge seed.
- The second and third SNR tests were seeded with grab samples of RAS from the HPO 2nd Stage clarifiers.
 - In SNR Test 2 a grab sample of HPO primary effluent was added to the activated sludge seed.
 - In SNR Test 3 a grab sample of HPO second stage effluent was added to the activated sludge seed.
- The fourth SNR test was seeded with mixed liquor from the HPO 2nd Stage activated sludge basin.
- Ammonium chloride was added to each of the four SNR tests such that the initial ammonia concentration was approximately 30 mgN/L.
- A small amount of supplemental phosphorus (in the form of potassium dihydrogen phosphate) was added to each SNR test to ensure nutrient limitations would not impact the test.
- Each SNR test was aerated using aquarium air pumps and air stones, and a stand mixer provided mixing.
- In SNR tests 1, 2 and 3, additional alkalinity in the form of sodium bicarbonate was added to ensure stable pH throughout the test.
- In SNR test 4, the pH was allowed to slowly increase order to assess the impact of pH on the nitrification rate. The mixed liquor sample for this test was obtained by inserting tubing connected to a portable peristaltic pump into a sampling port at the end of the HPO 2nd Stage reactor and pumping out approximately 6 L of mixed liquor into a sample container. A pH meter was inserted into the sample container to measure the pH of the sample as it was pumped out of the basin. The sample container was sealed with no headspace and immediately transported to the on-site lab. SNR test 4 was commenced within 20 minutes of withdrawing the sample and the test was carried out in the sample container rather being poured into a glass beaker. These steps were taken to minimize the release of CO₂ gas from the mixed liquor sample to allow SNR test 4 to begin at a similar pH (5.85) as that in the HPO 2nd Stage reactor. The DO concentration in the mixed liquor sample was initially above 5 mg/L and decreased to 2 mg/L during the first 20 minutes of the test. An air stone connected to an aquarium air pump was then inserted into the sample container to maintain the DO concentration at around 2 mg/L for the remainder of the test.

Figure 10 shows the testing apparatus set up at the Rochester WRP laboratory facility by EnviroSim for SNR 2 (left) and SNR 3 (right). SNR 1 was carried out using the same apparatus. Figure 11 shows the testing apparatus set up for SNR 4 at the beginning of the test. The results from each SNR test are summarized in the following sections.

Figure 10. SNR Test 2 (Left) and SNR Test 3 (Right), August 30, 2017

Figure 11. SNR Test 4, August 31, 2017

Brown AND Caldwell

3.2.1 SNR Test 1

The first SNR was performed on August 29th, 2017, using RAS and primary effluent from the ABC plant. At the start of the test, three 20 mL aliquots were removed, separately filtered, and analyzed for ammonia-, nitrite-, and nitrite-nitrogen. In addition, a VSS analysis was carried out on the solids retained on each filter paper. Every 20 to 60 minutes over the duration of the test, a 20 mL aliquot was removed, filtered and analyzed for ammonia-, nitrite-, and nitrite-nitrogen.

Plotting the ammonia-, nitrate-, and nitrite-nitrogen data versus time shows linear responses for ammonia removal and oxidized nitrogen (consisting of both nitrite and nitrate) production, as evident in Figure 12.

Figure 12. Ammonia Removal and NO $_{\rm X}$ Production vs. Time for SNR Test 1.

Linear regression analysis is used to estimate the ammonia removal rate and the nitrite, nitrate and NO_X production rates. Dividing these rates by the batch VSS concentration yields the specific rates, as shown in Table 4.

Table 4. Summary of Results for SNR Test 1					
Activated sludge source	ABC RAS				
Diluent source	ABC primary effluent				
VSS (mg/L)	1928				
NO ₃ Production Rate (mgN/L/min)	0.109				
Ammonia Removal Rate (mgN/L/min)	0.143				
Specific Ammonia Removal Rate (mgN/gVSS/hr)	4.45				
Average Test Temperature (°C)	21.9				
SNH3RR corrected to 20°C (mgN/gVSS/hr)	3.90				
NO _X Production Rate (mgN/L/min)	0.140				
Specific NOx Production Rate (mgN/gVSS/hr)	4.36				
SNOxPR corrected to 20°C (mgN/gVSS/hr)	3.82				

The specific rates were corrected to 20 °C using Equation [3]. The adjustment was achieved using the same Arrhenius coefficient as used to adjust the μ_{AUT} . That is,

[3]

$$SNPR_{20} = SNPR_T \cdot 1.072^{\cdot (20-T)}$$

• As previously mentioned, the ratio NO_3PR/NO_xPR is linked directly to the ratio NOB/AOB (but not equal to NOB/AOB). For example, in a fully nitrifying plant with balanced AOB and NOB populations the ratio typically should be close to 0.8. In SNR Test #1, the NO_3PR is 0.109 mgN/L/min and the NO_xPR is 0.140 mgN/L/min, hence the NO_3PR/NO_xPR is 0.78. This confirms that the ABC plant has a typical NOB/AOB biomass ratio of a fully-nitrifying plant. The TIN concentration remained relatively constant throughout the test.

3.2.2 SNR Test 2 and SNR Test 3

The second and third SNR tests were performed in parallel on August 30th, 2017 using grab samples of RAS from the HPO 2nd Stage clarifiers as seed. In SNR Test 2 a grab sample of HPO primary effluent was added to the seed. In SNR Test 3 a grab sample of HPO second stage effluent was added to the seed. At the start of each test, three 20 mL aliquots were removed, separately filtered, and analyzed for ammonia-, nitrite-, and nitrite-nitrogen. In addition, a suspended solids analysis was carried out on the solids retained on each filter paper. Every 20 to 75 minutes over the duration of the test, a 20 mL aliquot was removed, filtered and analyzed for ammonia-, nitrite-nitro-gen.

Plotting the ammonia-, nitrate-, and nitrite-nitrogen data versus time shows linear responses for ammonia removal and oxidized nitrogen (consisting of both nitrite and nitrate) production. The results for SNR Test 2 are shown in Figure 13.

Figure 13. Ammonia Removal and NO_x Production vs. Time for SNR Test 2.

Linear regression analysis is used to estimate the ammonia removal rate and nitrate and NO_X production rates. Dividing these rates by the batch VSS concentration yields the specific rates, as shown in Table 5.

The results for SNR Test 3 are shown in Figure 14.

Table 5. Summary of Results for SNR Tests 2 and 3					
Item	SNR Test 2	SNR Test 3			
Activated sludge source	HPO 2 nd Stage RAS	HPO 2 nd Stage RAS			
Diluent source	HPO Primary Effluent	HPO 2 nd Stage Effluent			
VSS (mg/L)	1962	1933			
NO ₃ Production Rate (mgN/L/min)	0.121	0.129			
Ammonia Removal Rate (mgN/L/min)	0.107	0.108			
Specific Ammonia Removal Rate (mgN/gVSS/hr)	3.27	3.35			
Average Test Temperature (°C)	22.4	22.4			
SNH3RR corrected to 20°C (mgN/gVSS/hr)	2.77	2.85			
NO _x Production Rate (mgN/L/min)	0.122	0.125			
Specific NO _X Production Rate (mgN/gVSS/hr)	3.73	3.88			
SNOxPR corrected to 20°C (mgN/gVSS/hr)	3.15	3.29			

Brown AND Caldwell

Figure 14. Ammonia Removal and NO_X Production vs. Time for SNR Test 3

The TIN concentration remained essentially constant throughout SNR Test 2 and SNR Test 3. In both tests there was no accumulation of nitrite, and the NO_3PR closely matched the NO_xPR . This likely is a consequence of at least a degree of inhibition of the first step in nitrification; that is, inhibition of AOBs.

The SNO_xPR measured in SNR Test 3 was very close to that measured in SNR Test 2 (*i.e.* difference in values corrected to 20°C was less than 5%). This indicates that if the lower than typical nitrification rate observed in the ABC plant is due to an influent inhibitory substance, it is not being removed across both stages of the HPO reactors. If an inhibitory substance was being removed across the HPO reactors, the SNO_xPR for SNR Test 3 with secondary effluent should have been significantly higher than the SNO_xPR for SNR Test 2 with primary effluent.

3.2.3 SNR Test 4

The fourth SNR test was performed on August 31st, 2017, using HPO 2nd Stage mixed liquor supplemented with ammonia. As mentioned previously, the pH of the mixed liquor in SNR Test 4 was allowed to increase from the low value (5.85) at which it was obtained to around 7. The pH in the test increased as the reactor was mixed and aerated, resulting in stripping of dissolved CO2. When the pH reached approximately 7, sodium bicarbonate was added to prevent the pH from decreasing due to the consumption of alkalinity by nitrification.

At the start of the test, three 20 mL aliquots were removed, separately filtered, and analyzed for ammonia-, nitrite-, and nitrite-nitrogen. In addition, a VSS analysis was carried out on the solids retained on each filter paper. While the pH increased from 5.85 to approximately 6.7, samples were taken from the reactor every 4 to 10 minutes to provide better data resolution to assess whether the nitrification rate increased with pH. As the pH increased from 6.7 to 7 and was maintained at around 7,

samples were taken every 30 to 100 minutes as it was assumed that the nitrification rate would remain the same at a neutral pH. For each sample, a 20 mL aliquot was removed, filtered and analyzed for ammonia-, nitrite-, and nitrite-nitrogen.

The ammonia-, nitrate-, and nitrite-nitrogen data in SNR Test 4 were plotted versus time in Figure 15 along with the pH. The upper chart shows the data over the entire test and the bottom chart shows the data over the first 108 minutes of the test when the pH increased from 5.85 to 6.9. The pH rapidly increased from 5.85 to 6.9 over the first 108 minutes of the test and then remained around 7 for the last 4 hours of the test. The ammonia-, nitrate-, and nitrite-nitrogen data are linear over the duration of the test. Linear regression was performed on the full dataset for each of these parameters and the R-squared value for each linear regression is very close to 1. Had the nitrification rate increased with pH, the ammonia-, nitrate-, and nitrite-nitrogen data would have been nonlinear.

Figure 15. Ammonia Removal and NO_x Production vs. Time for SNR Test 4.

The ammonia removal rate and nitrate and NO_X production rates were estimated from the linear regression analysis. Dividing these rates by the batch VSS concentration yields the specific rates, as shown in Table 6.

Table 6. Summary of Results for SNR Test 4				
VSS (mg/L)	1900			
NO ₃ Production Rate (mgN/L/min)	0.098			
Ammonia Removal Rate (mgN/L/min)	0.085			
Specific Ammonia Removal Rate (mgN/gVSS/hr)	2.68			
Average Test Temperature (°C)	21.5			
SNH3RR corrected to 20°C (mgN/gVSS/hr)	2.42			
NOx Production Rate (mgN/L/min)	0.100			
Specific NO _x Production Rate (mgN/gVSS/hr)	3.16			
SNOxPR corrected to 20°C (mgN/gVSS/hr)	2.85			

The TIN concentration remained relatively constant throughout SNR Test 4. As with SNR Test 2 and Test 3, there was no accumulation of nitrite, and the NO_3PR closely matched the NO_xPR . Again, this likely is a consequence of at least a degree of inhibition of the first step in nitrification; that is, inhibition of AOBs.

The measured SNO_xPR at 20 °C in SNR Test 4 was 2.85 mgN/gVSS/hr. This is approximately 11% lower than the corresponding SNO_xPR values observed in SNR Test 2 and SNR Test 3. In SNR Test 4 the pH increased from 5.85 to 7 whereas it was maintained at close to 7 throughout SNR tests Test 2 and Test 3. [As mentioned in Section 2.2, a reasonable basis for assessing data is to assume that nitrification inhibition is occurring if the SNO_xPR value is *more than* 8.5% lower than the control test]. Thus it would appear that the lower pH in SNR Test 4 further reduced nitrification rate as expected.

Section 4: Conclusions

The nitrification testing conducted in this investigation was used to determine whether nitrifier growth is being inhibited at the Rochester WRP. Two main goals were addressed:

- Measurement of µ_{AUT} for the ABC train of the Rochester WRP based on the Washout Test protocol.
- Conducting SNR tests to determine:
 - Whether the ABC plant is fully nitrifying and has a typical ratio of NOB to AOB.
 - Whether there are inhibitory compounds present in the HPO primary effluent, and if so, whether those are biologically degraded in the HPO plant.
 - \circ $\;$ Whether the nitrification rate increases as the pH of the HPO mixed liquor is increased to 7.

The first goal was achieved using the Washout Test protocol as outlined above. A Washout Test was conducted over a period of 5 days with mixed liquor from the ABC plant at the Rochester WRP used as the nitrifier seed source. Influent to the reactor was ABC primary effluent. This test yielded a μ_{AUT} estimate of 0.68 d⁻¹ for the plant at the time of the testing. The μ_{AUT} estimate of 0.68 d⁻¹ (with a 95% confidence interval of <0.65 d⁻¹, 0.70 d⁻¹>) is lower than the typical range of 0.8 – 1.0 d⁻¹ observed at many other wastewater treatment plants (WERF, 2003). This suggests that there is some degree of nitrification inhibition at the Rochester WRP.

The overall outcome of the study suggests that simulations on the Rochester WRP should apply the following maximum specific growth rates for AOB and NOB (referenced to 20°C).

The second goal of this study was addressed by performing four SNR batch tests. Table 7 summarizes the results and conclusions from the SNR batch tests.

Table 7. Summary of SNR Tests Conducted at Rochester WRP, Aug. 29-31, 2017						
SNR Test	Test Date(s)	SNOxPR	SNO3PR/SNOxPR	Activated Sludge Source & Volume	Diluent Source & Volume	Summary of Result
1	August 29, 2017	3.82	0.78	ABC RAS (4 L)	ABC Primary Efflu- ent (4 L)	Result indicates typical NOB/AOB biomass ratio for fully nitrifying plant
2	August 30, 2017	3.15	0.99	HPO 2nd Stage RAS (4 L)	HPO Primary Efflu- ent (4 L)	The SNO _x PR values between SNR Test 2 and SNR Test 3 are equivalent indicating that HPO reactors do not remove the inhibitory components in
3		3.29	1.03	HPO 2nd Stage RAS (4 L)	HPO Secondary Ef- fluent (4 L)	the plant influent; that is, whatever is causing the lower than typical nitrifi- cation rate estimated using the Washout method is persistent. In both tests, the NO_3PR closely matched the NO_xPR . This likely is a consequence of at least a degree of inhibition of the first step in nitrifica- tion; that is, inhibition of AOBs
4	August 31, 2017	2.85	0.98	HPO 2nd Stage Mixed Liquor (4 L)	N/A	The nitrification rate remained con- stant as the pH increased from 5.85 to 7 in the SNR test. However, the overall nitrification rate is statisti- cally lower than that in SNR Test 2 and Test 3, indicating that the lower pH in SNR Test 4 further reduced the nitrification rate. As with SNR Test 2 and Test 3, the NO ₃ PR closely matched the NO _x PR. This likely is a consequence of at least a degree of inhibition of the first step in nitrifica- tion; that is, inhibition of AOBs.

Section 5: Recommendations

It is important to note that the Washout Test is considered a spot check of the μ_{AUT} (μ_{AOB}) at the time the samples are taken. The inhibition observed here may occur sporadically due to 'spike' inputs of inhibitory compounds. To assess whether these rates are a true reflection of the average rate at the plant would require a more comprehensive sampling study similar to those discussed in Bye *et al.* (2012). For BioWin Version 5.2, an μ_{AOB} value of 0.70 d⁻¹ and μ_{NOB} value of 0.65 d⁻¹ are recommended and should be confirmed in the planned dynamic BioWin calibration.

The main effect of a low μ_{AOB} value of 0.70 d⁻¹ for the Rochester WRP is that a longer aerobic SRT is required to ensure complete nitrification. Consider Figure 16, which shows the predicted effluent ammonia *versus* SRT for typical and low μ_{AOB} and μ_{NOB} values at a design temperature of 12 °C. There is an increase in the minimum aerobic SRT for a μ_{AOB} value of 0.70 d⁻¹ when compared to a typical value of 0.9 d⁻¹.

Figure 16. Effluent Ammonia vs. Aerobic SRT for Different µAOB and µAOB Values (12°C).

Section 6: References

Brown AND Caldwell

- Bye, C.M., Jones, R.M., and Dold, P.L. Pragmatic nitrification inhibition testing for robust plant design. Water Environment Federation 85th Annual Conference and Exposition, New Orleans, LA, USA, September 29 October 3, 2012.
- Dold, P.L., Du, W., Burger, G., and Jimenez, J. *Is nitrite-shunt happening in the system? Are NOB repressed?* Water Environment Federation 87th Annual Conference and Exposition, Chicago, IL, USA, September 26 - 30, 2015.
- WERF (Water Environment Research Foundation) (2003) *Methods for wastewater characterization in activated sludge modeling.* Project 99-WWF-3, ISBN 1-893664-71-6. Alexandria, Virginia.

LOWER ENERGY // CLEAN DESIGN DECREASED MAINTENANCE // INNOVATIVE PROCESSES

- Technical Memorandum 1 Technical Memorandum 2 Technical Memorandum 3 Technical Memorandum 4 Technical Memorandum 5 Technical Memorandum 7 Technical Memorandum 8 Technical Memorandum 9 Technical Memorandum 10 Technical Memorandum 11 Technical Memorandum 12 Technical Memorandum 12
- Influent Flows and Loadings Wastewater Characterization and BioWin Calibration Plant Hydraulic Evaluation Primary Clarifier Computational Fluid Dynamics Modeling Final Clarifier Computational Fluid Dynamics Modeling Liquid Stream Alternative Evaluation Solids Alternative Evaluation Digester Gas Management Disinfection and Outfall Evaluation Whole Plant Evaluation Heat Recovery Loop Alternative NPDES Permitting Process
- Industrial Discharge Wasteloads and Practices