

TECHNOLOGY OVERVIEW: AUTONOMOUS VEHICLES

Ben Pierce

Ben.Pierce@HDRINC.Com

(614) 315-8911

FC

CONNECTED CAR

Internet Connectivity

- Cellular Connectivity/WiFi Hotspot
- Infotainment Systems

Smartphone Extension

Telematics and Remote Access

CONNECTED VEHICLE

Point-to-Point Wireless Communications

- Dedicated Short Range Communications
- V2V (Vehicle-to-Vehicle)
- V2I (Vehicle-to-Infrastructure)
- V2X (Vehicle-to-All)
- Low Latency Wireless (Milliseconds)
 5.9 GHz
 - o 802.11p wireless router, IEEE1609.X

AUTONOMOUS VEHICLES

• How do they work?

RELATIONSHIP BETWEEN CONNECTED CARS, CONNECTED VEHICLES AND AUTONOMOUS VEHICLES

- Cars connected to
 Internet
- Some Level of Autonomy
- CVs in Pilot Deployments

- Cars connected to Internet
- AV production vehicles (Level 3)
- CVs in Production Vehicles

- Cars Connected to
 Internet
- AV production vehicles (Level 4)
- CVs Ubiquitous

AUTONOMOUS VEHICLES – LITERATURE PROJECTIONS

Passenger Vehicle Fleet Adoption of Level 3 or above: 10% to 40% by 2030

Penetration Rate

AUTONOMOUS VEHICLES

AUTONOMOUS VEHICLE MANUFACTURERS (TRANSIT)

Olli by Local Motors

- 12 passenger
- Electric
- Lidar and Optical
- Human Monitored
- Based upon IBM Watson
- Deployed (Pilots) 2016
 - Washington, DC
 - Miami
 - Los Vegas

EZ10 by EasyMile

- 12 passenger
- Electric
- Deployed (Pilots) 2016
 - Helsinki, Finland
 - Concord, California
 - Singapore (2015)
 - Tampa Florida (2017)
- 1.5M rides

ARMA by Navya

- 15 passenger
- Electric
- Lidar, Optical, GPS
- Deployed (Pilots)
 - Cologne
 - Germany
 - Australia
- Deployed
 - SION (2016)

AUTONOMOUS TRANSIT

Physical and Operational Characteristics (EasyMile EZ10)

- Three Modes of Operation
 - Traditional Metro (every stop)
 - Commuter (Stop on demand)
 - On-Demand (Dynamic Transit) for First Mile/Last Mile
- 12 Passenger
 - $_{\circ}$ 6 seated, 6 standing
- Electrically Powered
 - Battery: Lithium-ion (LiFeP04)
 - o Battery Charger: 230V 16A
 - $_{\circ}~$ 14 hours running on single charge

Width6.5 ftSpeedHeight9.0 ftMax Speed24.9 mphCurb Weight6,173 lbs

EASY MILE IN OPERATION: HTTPS://VIMEO.COM/137217228

OLLI BY LOCAL MOTORS: HTTPS://WWW.YOUTUBE.COM/WATCH?V=9JOESWIYFEI

LIKELY OPERATIONAL DEPLOYMENTS

- First Mile/Last Mile
 - Connect travelers to existing transit options
 - Circulator
 - Hub-Spoke
- On-Demand Transit

 Paratransit surrogate
 Door-to-door
- Full Service Operations
 Replaces traditional Transit

FULL TRANSIT SERVICE OPERATIONAL MODELS

- Modular Lanes
 - Dynamically modify width of lanes to accommodate autonomous vehicles
- Exclusive Autonomous Lanes

 Grade segregated, dedicated
 At-grade segregated, dedicated
 by time-of-day
 - $_{\circ}$ Mixed use lanes

Modular Lanes

HOT/HOV Managed Lanes with Transit

Grade Segregated Dedicated Lanes

At-Grade, Dynamic Shoulder

AUTONOMOUS VEHICLES – IMPLICATIONS ON TRANSPORTATION

Desk Reference and Tools for Estimating the Local, Regional, and State-Wide Economic Development Benefits of Connected Vehicle to Infrastructure Deployments

Contract #DTFH61-13-D-0001

Desk Reference for Estimating the Local, Regional, and State-Wide Economic Development Benefits of Connected Vehicle to Infrastructure Deployments *Revised*

Submitted To	
Federal Highway Administration Office of Policy and Governmental Affairs 1200 New Jersey Avenue, S.E. Washington, DC 20590	
Submitted by	
Battelle HDR	
Synesis	
April, 2016	

Autonomous Vehicles – Implications for Transit

Autonomous Vehicles Complement Transit

 Jarrett Walker (Human Transit) – "mass transit will remain crucial in places defined by a shortage of space per person. Mass transit, where densities are high enough to support it, is an immensely efficient use of space"

Autonomous Vehicles Replace Transit

 Robin Chase (Zipcar) – Autonomous vehicles will replace traditional transit with public transit providing vouchers for trips.

Meeting in the Middle (Austin Good)

- Emphasis on fast, high capacity fixed-route corridors
- Flex-routes in low demand areas
- Stations as transfer hubs
- No more schedules or off hours
- Less of a need for paratransit
- Ride share/transit fare integration
- Frequent & fast intercity fixed-routes

IMPACTS OF AUTOMATED TRANSIT ON URBAN TRAVEL

- "presence of the community transit [automated first-mile/last-mile shuttle] and urban-design improvements had a marked effect on the sample population..."
- "...community shuttle produced greater change in the lower density areas..."
- "...high-frequency transit shuttles could trigger significant shifts from driving to public transit. Shifts to public transit may be larger in low-density neighborhoods that are more automobile-oriented and in neighborhoods where bus service is unavailable, unreliable, or infrequent."

The Impact of Automated Transit, Pedestrian, and Bicycling Facilities on Urban Travel Patterns

SUMMARY REPORT

POTENTIAL IMPACTS WITH MAJOR TRENDS

STRENGTHS AND WEAKNESSES

Strengths

- Cost economical compared to traditional transit systems
- Opportunity for "personalized" and flexible service models
- Several manufacturers more emerging rapidly
- Interoperability between existing transit and manufacturers and infrastructure
- Provides significant safety and environmental benefits

Weaknesses

- Still relatively new technology/mode; durability for long operations has not been verified
- Requires new policies, training, and operational support
- Current technology will be challenged to move significant numbers of people expeditiously
- Acceptance by public has not been validated

KEY CONCLUSIONS

- Autonomous vehicles with Transit are beginning to be realized
 Adoption will continue to rise
- Autonomous transit vehicles could increase transit ridership through

 First-Mile/Last-Mile connectivity; particularly in low density areas
 Reduces need for parking services in central business district
- Autonomous transit vehicles not likely to replace traditional transit in the near future (10-15 years)

• May begin to replace fixed route transit in 15-25 years

Significant uncertainty of impact of AV on travel and capacity remains
 o Very little uncertainty of the technology itself

